Jakarta EE Tutorial

vo.1

2024-09-30

Preface

This tutorial is a guide to developing enterprise applications for the Jakarta EE 9 Platform, using
Eclipse GlassFish Server.

Eclipse GlassFish Server is the leading open-source and open-community platform for building and
deploying next-generation applications and services. Eclipse GlassFish Server, developed by the
Eclipse GlassFish project open-source community at https:/projects.eclipse.org/projects/
eedj.glassfish, is a compatible implementation of the Jakarta EE 9 platform specification. This
lightweight, flexible, and open-source application server enables organizations not only to leverage
the new capabilities introduced within the Jakarta EE 9 specification, but also to add to their
existing capabilities through a faster and more streamlined development and deployment cycle.
Eclipse GlassFish Server is hereafter referred to as GlassFish Server.

Audience

This tutorial is intended for programmers interested in developing and deploying Jakarta EE 9
applications. It covers the technologies comprising the Jakarta EE platform and describes how to
develop Jakarta EE components and deploy them on the Eclipse GlassFish.

Before You Read This Book

Before proceeding with this tutorial, you should have a good knowledge of the Java programming
language. A good way to get to that point is to work through the Java™ Tutorials
https://docs.oracle.com/javase/tutorial/index.html.

Related Documentation

The GlassFish Server documentation set describes deployment planning and system installation. To
obtain the GlassFish Server documentation, go to https://glassfish.org/docs.

The Jakarta EE 9 API specification can be viewed at https://jakarta.ee/specifications/platform/9/.
Additionally, the Jakarta EE Specifications at https://jakarta.ee/specifications might be useful.

For information about creating enterprise applications in the NetBeans Integrated Development
Environment (IDE), see https://netbeans.apache.org/kb/.

For information about Apache Derby for use with GlassFish Server, see https://db.apache.org/derby/
docs/10.14/adminguide/.

The GlassFish Samples project is a collection of sample applications that demonstrate a broad range
of Jakarta EE technologies. The GlassFish Samples are available from the GlassFish Samples project
page at https://github.com/eclipse-ee4j/glassfish-samples/.

https://projects.eclipse.org/projects/ee4j.glassfish
https://projects.eclipse.org/projects/ee4j.glassfish
https://docs.oracle.com/javase/tutorial/index.html
https://glassfish.org/docs
https://jakarta.ee/specifications/platform/9/
https://jakarta.ee/specifications
https://netbeans.apache.org/kb/
https://db.apache.org/derby/docs/10.14/adminguide/
https://db.apache.org/derby/docs/10.14/adminguide/
https://github.com/eclipse-ee4j/glassfish-samples/

Conventions

The following table describes the typographic conventions that are used in this book.

Convention Meaning Example

Boldface Boldface type indicates graphical user From the File menu, choose Open
interface elements associated with an Project.
action or terms defined in text.
A cache is a copy that is stored
locally.

Monospace Monospace type indicates the names Edit your .1login file.
of files and directories, commands
within a paragraph, URLs, code in Use 1s -a to list all files.
examples, text that appears on the
screen, or text that you enter. machine_name% you have mail.

Italic Italic type indicates book titles, Read Chapter 6 in the User’s Guide.
emphasis, or placeholder variables for
which you supply particular values. Do not save the file.

The command to remove a file is rm
filename.

Default Paths and File Names

The following table describes the default paths and file names that are used in this book.

Placeholder Description Default Value
as-install Represents the base installation Installations on the Solaris operating
directory for GlassFish Server. system, Linux operating system, and

Mac operating system:

userlls-home-
directory/qlassfish6/glassfish

Windows, all installations:

SystemDrive:\glassfishb\glassfish

Placeholder Description Default Value

as-install-parent Represents the parent of the base Installations on the Solaris operating
installation directory for GlassFish system, Linux operating system, and
Server. Mac operating system:

users-home-directory/glassfishé

Windows, all installations:

SystemDrive:\glassfisho

jakartaee-examples Represents the base installation userlls-home-directory/jakartaee-
directory for the Jakarta EE Tutorial ~ ¢*@mPles
examples project after you download
or clone it.

domain-dir Represents the directory in which a as-install/domains/domain
domain’s configuration is stored.

Introduction

Overview

This chapter introduces you to Jakarta EE enterprise application development. Here you will
review development basics, learn about the Jakarta EE architecture and APIs, become acquainted
with important terms and concepts, and find out how to approach Jakarta EE application
programming, assembly, and deployment.

Introduction to Jakarta EE

Developers today increasingly recognize the need for distributed, transactional, and portable
applications that leverage the speed, security, and reliability of server-side technology. Enterprise
applications provide the business logic for an enterprise. They are centrally managed and often
interact with other enterprise software. In the world of information technology, enterprise
applications must be designed, built, and produced for less money, with greater speed, and with
fewer resources.

With Jakarta EE, development of Java enterprise applications has never been easier or faster. The
aim of the Jakarta EE platform is to provide developers with a powerful set of APIs while
shortening development time, reducing application complexity, and improving application
performance.

The Jakarta EE platform is developed through the Jakarta EE Specification Process. Expert groups
composed of interested parties have created Jakarta Specifications to define the various Jakarta EE
technologies. The work of the Jakarta Community under the Jakarta EE Specification Process
program helps to ensure Java technology’s standards of stability and cross-platform compatibility.

The Jakarta EE platform uses a simplified programming model. XML deployment descriptors are
optional. Instead, a developer can simply enter the information as an annotation directly into a
Java source file, and the Jakarta EE server will configure the component at deployment and
runtime. These annotations are generally used to embed in a program data that would otherwise be
furnished in a deployment descriptor. With annotations, you put the specification information in
your code next to the program element affected.

In the Jakarta EE platform, dependency injection can be applied to all resources a component
needs, effectively hiding the creation and lookup of resources from application code. Dependency
injection can be used in enterprise bean containers, web containers, and application clients.
Dependency injection allows the Jakarta EE container to automatically insert references to other
required components or resources, using annotations.

This tutorial uses examples to describe the features available in the Jakarta EE platform for
developing enterprise applications. Whether you are a new or experienced enterprise developer,
you should find the examples and accompanying text a valuable and accessible knowledge base for
creating your own solutions.

Jakarta EE 9 Platform Highlights

The goal of the Jakarta EE 9 release is to deliver a set of specifications functionally similar to Jakarta
EE 8 but in the new Jakarta EE 9 namespace jakarta.*

In addition, the Jakarta EE 9 release removes a small set of specifications from Jakarta EE 8 that
were old, optional, or deprecated in order to reduce the surface area of the APIs to ensure that it is
easier for new vendors to enter the ecosystem — as well as reduce the burden on implementation,
migration, and maintenance of these old APIs.

The following Jakarta EE Technologies were removed from the Jakarta EE Platform:

XML Registries 1.0

XML RPC 1.1
* Deployment 1.7

* Management 1.1

Distributed Interoperability (EJB 3.2 Core Specification, Chapter 10)

Aside from the removed technologies, some technologies in Jakarta EE 9 release are marked as
optional. The reason for this is that some of the technologies originally included in Jakarta EE are
no longer as relevant as they were when they were introduced to the platform.

Platform Specification Project can decide to officially "remove" the "optional" feature from the
Platform in the next (or beyond) releases.

The following technologies are optional:

 Jakarta Enterprise Beans 3.2 and earlier entity beans and associated Jakarta Enterprise Beans
QL

 Jakarta Enterprise Beans 2.x API group

* Jakarta Enterprise Web Services 2.0

 Jakarta SOAP with Attachments 2.0

» Jakarta Web Services Metadata 3.0

 Jakarta XML Web Services 3.0

* Jakarta XML Binding 3.0

Jakarta EE Application Model

The Jakarta EE application model begins with the Java programming language and the Java virtual
machine. The proven portability, security, and developer productivity they provide form the basis
of the application model. Jakarta EE is designed to support applications that implement enterprise
services for customers, employees, suppliers, partners, and others who make demands on or
contributions to the enterprise. Such applications are inherently complex, potentially accessing
data from a variety of sources and distributing applications to a variety of clients.

To better control and manage these applications, the business functions to support these various

users are conducted in the middle tier. The middle tier represents an environment that is closely
controlled by an enterprise’s information technology department. The middle tier is typically run
on dedicated server hardware and has access to the full services of the enterprise.

The Jakarta EE application model defines an architecture for implementing services as multitier
applications that deliver the scalability, accessibility, and manageability needed by enterprise-level
applications. This model partitions the work needed to implement a multitier service into the
following parts:

* The business and presentation logic to be implemented by the developer

» The standard system services provided by the Jakarta EE platform

The developer can rely on the platform to provide solutions for the hard systems-level problems of
developing a multitier service.

Distributed Multitiered Applications

The Jakarta EE platform uses a distributed multitiered application model for enterprise
applications. Application logic is divided into components according to function, and the
application components that make up a Jakarta EE application are installed on various machines
depending on the tier in the multitiered Jakarta EE environment to which the application
component belongs.

Figure 1, “Multitiered Applications” shows two multitiered Jakarta EE applications divided into the
tiers described in the following list. The Jakarta EE application parts shown in Figure 1, “Multitiered
Applications” are presented in Jakarta EE Components.

* Client-tier components run on the client machine.

* Web-tier components run on the Jakarta EE server.

* Business-tier components run on the Jakarta EE server.

* Enterprise information system (EIS)-tier software runs on the EIS server.
Although a Jakarta EE application can consist of all tiers shown in Figure 1, “Multitiered
Applications”, Jakarta EE multitiered applications are generally considered to be three-tiered
applications because they are distributed over three locations: client machines, the Jakarta EE
server machine, and the database or legacy machines at the back end. Three-tiered applications

that run in this way extend the standard two-tiered client-and-server model by placing a
multithreaded application server between the client application and back-end storage.

Jakarta EE Jakarta EE
Application 1 Application 2
. Client
/ Client Machine
Tier
Application
Client
Jakarta Server '
Pages
Faces Web
Tier
Jakarta EE
Server
Enterprise Enterprise '
Beans Beans Business
Tier
J \‘. J \‘.
— - \J
-_— -_— Database
EIS
W Database WY Database Ti SEFEE
ier
[— |

Figure 1. Multitiered Applications

Security

Although other enterprise application models require platform-specific security measures in each
application, the Jakarta EE security environment enables security constraints to be defined at
deployment time. The Jakarta EE platform makes applications portable to a wide variety of security
implementations by shielding application developers from the complexity of implementing security
features.

The Jakarta EE platform provides standard declarative access control rules that are defined by the
developer and interpreted when the application is deployed on the server. Jakarta EE also provides
standard login mechanisms so that application developers do not have to implement these
mechanisms in their applications. The same application works in a variety of security
environments without changing the source code.

Jakarta EE Components

Jakarta EE applications are made up of components. A Jakarta EE component is a self-contained
functional software unit that is assembled into a Jakarta EE application with its related classes and
files and that communicates with other components.

The Jakarta EE specification defines the following Jakarta EE components:

» Application clients and applets are components that run on the client.

» Jakarta Servlet, Jakarta Faces, and Jakarta Server Pages technology components are web
components that run on the server.

* Enterprise bean components (enterprise beans) are business components that run on the
server.

Jakarta EE components are written in the Java programming language and are compiled in the
same way as any program in the language. The differences between Jakarta EE components and
"standard" Java classes are that Jakarta EE components are assembled into a Jakarta EE application,
they are verified to be well formed and in compliance with the Jakarta EE specification, and they
are deployed to production, where they are run and managed by the Jakarta EE server.

Jakarta EE Clients

A Jakarta EE client is usually either a web client or an application client.

Web Clients

A web client consists of two parts:

* Dynamic web pages containing various types of markup language (HTML, XML, and so on),
which are generated by web components running in the web tier

* A web browser, which renders the pages received from the server

A web client is sometimes called a thin client. Thin clients usually do not query databases, execute
complex business rules, or connect to legacy applications. When you use a thin client, such
heavyweight operations are off-loaded to enterprise beans executing on the Jakarta EE server,
where they can leverage the security, speed, services, and reliability of Jakarta EE server-side
technologies.

Application Clients

An application client runs on a client machine and provides a way for users to handle tasks that
require a richer user interface than can be provided by a markup language. An application client
typically has a graphical user interface (GUI) created from the Swing API or the Abstract Window
Toolkit (AWT) APL, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However, if
application requirements warrant it, an application client can open an HTTP connection to
establish communication with a servlet running in the web tier. Application clients written in
languages other than Java can interact with Jakarta EE servers, enabling the Jakarta EE platform to
interoperate with legacy systems, clients, and non-Java languages.

Applets

A web page received from the web tier can include an embedded applet. Written in the Java
programming language, an applet is a small client application that executes in the Java virtual
machine installed in the web browser. However, client systems will likely need the Java Plug-in and
possibly a security policy file for the applet to successfully execute in the web browser.

Web components are the preferred API for creating a web client program because no plug-ins or
security policy files are needed on the client systems. Also, web components enable cleaner and
more modular application design because they provide a way to separate applications

programming from web page design. Personnel involved in web page design thus do not need to
understand Java programming language syntax to do their jobs.

The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans component
architecture (JavaBeans components) to manage the data flow between the following:

* An application client or applet and components running on the Jakarta EE server

» Server components and a database
JavaBeans components are not considered Jakarta EE components by the Jakarta EE specification.

JavaBeans components have properties and have get and set methods for accessing those
properties. JavaBeans components used in this way are typically simple in design and
implementation but should conform to the naming and design conventions outlined in the
JavaBeans component architecture.

Jakarta EE Server Communications

Figure 2, “Server Communication” shows the various elements that can make up the client tier. The
client communicates with the business tier running on the Jakarta EE server either directly or, as in
the case of a client running in a browser, by going through web pages or servlets running in the
web tier.

Application Client and Optional Web Browser, Web Pages,
JavaBeans Components Applets, and Optional Client
JavaBeans Components . Machine
Client
gy Sy TS
A A
Web]al};eli_:rta
Tier
Server

Business
Tier

-t
—
4 o//‘

Figure 2. Server Communication

Web Components

Jakarta EE web components are either servlets or web pages created using Jakarta Faces technology
and/or Jakarta Server Pages technology. Servlets are Java programming language classes that
dynamically process requests and construct responses. Jakarta Server Pages are text-based
documents that execute as servlets but allow a more natural approach to creating static content.

Jakarta Faces technology builds on servlets and Jakarta Server Pages technology and provides a
user interface component framework for web applications.

Static HTML pages and applets are bundled with web components during application assembly but
are not considered web components by the Jakarta EE specification. Server-side utility classes can
also be bundled with web components and, like HTML pages, are not considered web components.

As shown in Figure 3, “Web Tier and Jakarta EE Applications”, the web tier, like the client tier,

might include a JavaBeans component to manage the user input and send that input to enterprise
beans running in the business tier for processing.

Application Client and Optional Web Browser, Web Pages,
JavaBeans Components Applets, and Optional Client
JavaBeans Components . Machine
o Client
“Il ‘“ , Tier @
A A
Web
JavaBeans Components Web Pages, Tier
(Optional) Servlets
Jakarta
EE
,kA > Server
e
X~
N
0
X
Business
Tier

Figure 3. Web Tier and Jakarta EE Applications

Business Components

Business code, which is logic that solves or meets the needs of a particular business domain such as
banking, retail, or finance, is handled by enterprise beans running in either the business tier or the
web tier. Figure 4, “Business and EIS Tiers” shows how an enterprise bean receives data from client
programs, processes it (if necessary), and sends it to the enterprise information system tier for

storage. An enterprise bean also retrieves data from storage, processes it (if necessary), and sends it
back to the client program.

10

Application Client and Optional Web Browser, Web Pages,
JavaBeans Components Applets, and Optional Client
JavaBeans Components . Machine
= Client
iy Sy TS
A A
y
Web
JavaBeans Components Web Pages, Tier
(Optional) Servlets
Jakarta
EE
Server

%4—»

Jakarta Persistence Entities, Session Beans, Busi.ness
Message-Driven Beans Tier

L/

|

v L

Database and Legacy Systems EIS
Tier

Database
Server

Figure 4. Business and EIS Tiers

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise infrastructure
systems, such as enterprise resource planning (ERP), mainframe transaction processing, database
systems, and other legacy information systems. For example, Jakarta EE application components
might need access to enterprise information systems for database connectivity.

Jakarta EE Containers

Normally, thin-client multitiered applications are hard to write because they involve many lines of
intricate code to handle transaction and state management, multithreading, resource pooling, and
other complex low-level details. The component-based and platform-independent Jakarta EE
architecture makes applications easy to write because business logic is organized into reusable
components. In addition, the Jakarta EE server provides underlying services in the form of a
container for every component type. Because you do not have to develop these services yourself,
you are free to concentrate on solving the business problem at hand.

11

Container Services

Containers are the interface between a component and the low-level, platform-specific
functionality that supports the component. Before it can be executed, a web, enterprise bean, or
application client component must be assembled into a Jakarta EE module and deployed into its
container.

The assembly process involves specifying container settings for each component in the Jakarta EE
application and for the Jakarta EE application itself. Container settings customize the underlying
support provided by the Jakarta EE server, including such services as security, transaction
management, Java Naming and Directory Interface (JNDI) API lookups, and remote connectivity.
Here are some of the highlights.

» The Jakarta EE security model lets you configure a web component or enterprise bean so that
system resources are accessed only by authorized users.

* The Jakarta EE transaction model lets you specify relationships among methods that make up a
single transaction so that all methods in one transaction are treated as a single unit.

* JNDI lookup services provide a unified interface to multiple naming and directory services in
the enterprise so that application components can access these services.

* The Jakarta EE remote connectivity model manages low-level communications between clients
and enterprise beans. After an enterprise bean is created, a client invokes methods on it as if it
were in the same virtual machine.

Because the Jakarta EE architecture provides configurable services, components within the same
application can behave differently based on where they are deployed. For example, an enterprise
bean can have security settings that allow it a certain level of access to database data in one
production environment and another level of database access in another production environment.

The container also manages nonconfigurable services, such as enterprise bean and servlet
lifecycles, database connection resource pooling, data persistence, and access to the Jakarta EE
platform APISs (see Jakarta EE APIs).

Container Types

The deployment process installs Jakarta EE application components in the Jakarta EE containers, as
illustrated in Figure 5, “Jakarta EE Server and Containers”.

12

Application Client Container Web Browser

/ Client
= Machine

Application Client @

A
Web
Servlet Web Page Container
ﬁ Jakarta
» gﬂa EE
Server
I
\l
Y v N
Qo
i - EJB X
Enterprise Bean Enterprise Bean] NS
, , Container
—
-—
-—
-_—
Database

Figure 5. Jakarta EE Server and Containers

The server and containers are as follows:

 Jakarta EE server: The runtime portion of a Jakarta EE product. A Jakarta EE server provides
enterprise and web containers.

» Jakarta Enterprise Bean container: Manages the execution of enterprise beans for Jakarta EE
applications. Jakarta Enterprise Beans and their container run on the Jakarta EE server.

* Web container: Manages the execution of web pages, servlets, and some enterprise bean

components for Jakarta EE applications. Web components and their container run on the
Jakarta EE server.

* Application client container: Manages the execution of application client components.
Application clients and their container run on the client.

* Applet container: Manages the execution of applets. Consists of a web browser and a Java Plug-
in running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based standards and
transport protocols to exchange data with calling clients. The Jakarta EE platform provides the XML
APIs and tools you need to quickly design, develop, test, and deploy web services and clients that
fully interoperate with other web services and clients running on Java-based or non-Java-based

13

platforms.

To write web services and clients with the Jakarta EE XML APIs, all you need to do is pass
parameter data to the method calls and process the data returned; for document-oriented web
services, you send documents containing the service data back and forth. No low-level
programming is needed because the XML API implementations do the work of translating the
application data to and from an XML-based data stream that is sent over the standardized XML-
based transport protocols. These XML-based standards and protocols are introduced in the
following sections.

The translation of data to a standardized XML-based data stream is what makes web services and
clients written with the Jakarta EE XML APIs fully interoperable. This does not necessarily mean
that the data being transported includes XML tags, because the transported data can itself be plain
text, XML data, or any kind of binary data, such as audio, video, maps, program files, computer-
aided design (CAD) documents, and the like. The next section introduces XML and explains how
parties doing business can use XML tags and schemas to exchange data in a meaningful way.

XML

Extensible Markup Language (XML) is a cross-platform, extensible, text-based standard for
representing data. Parties that exchange XML data can create their own tags to describe the data,
set up schemas to specify which tags can be used in a particular kind of XML document, and use
XML style sheets to manage the display and handling of the data.

For example, a web service can use XML and a schema to produce price lists, and companies that
receive the price lists and schema can have their own style sheets to handle the data in a way that
best suits their needs. Here are examples.

* One company might put XML pricing information through a program to translate the XML into
HTML so that it can post the price lists to its intranet.

* A partner company might put the XML pricing information through a tool to create a marketing
presentation.

* Another company might read the XML pricing information into an application for processing.

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access Protocol (SOAP)
messages over HTTP to enable a completely interoperable exchange between clients and web
services, all running on different platforms and at various locations on the Internet. HTTP is a
familiar request-and-response standard for sending messages over the Internet, and SOAP is an
XML-based protocol that follows the HTTP request-and-response model.

The SOAP portion of a transported message does the following:

* Defines an XML-based envelope to describe what is in the message and explain how to process
the message

* Includes XML-based encoding rules to express instances of application-defined data types
within the message

14

* Defines an XML-based convention for representing the request to the remote service and the
resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for describing
network services. The description includes the name of the service, the location of the service, and
ways to communicate with the service. WSDL service descriptions can be published on the Web.
Eclipse GlassFish Server provides a tool for generating the WSDL specification of a web service that
uses remote procedure calls to communicate with clients.

Jakarta EE Application Assembly and Deployment

A Jakarta EE application is packaged into one or more standard units for deployment to any Jakarta
EE platform-compliant system. Each unit contains

» A functional component or components, such as an enterprise bean, web page, servlet, or applet

* An optional deployment descriptor that describes its content

Once a Jakarta EE unit has been produced, it is ready to be deployed. Deployment typically involves
using a platform’s deployment tool to specify location-specific information, such as a list of local
users who can access it and the name of the local database. Once deployed on a local platform, the
application is ready to run.

Jakarta EE APIs

Figure 6, “Jakarta EE Containers” shows the relationships among the Jakarta EE containers.

Client System Jakarta EE Server
Browser B Bt Web Container
Jakarta Server Faces Servlet
Database
Application Client Container EJB Container
Application Client ™ EJB EJB

Figure 6. Jakarta EE Containers

Figure 7, “Jakarta EE APIs in the Web Container” shows the availability of the Jakarta EE APIs in the
web container.

15

Web Container Java SE

Bean Validation
Q Servlet EJB Lite
EL
Jakarta Server Faces]
JSP
Connectors

Jakarta Persistence

JMS

Management

WS Metadata

Web Services

JACC

JASPIC

JAX-RS

JAX-WS
JSTL
JTA

CDI

Dependency Injection

. New in Jakarta EE

Figure 7. Jakarta EE APIs in the Web Container

Figure 8, “Jakarta EE APIs in the enterprise bean Container” shows the availability of the Jakarta EE
APIs in the enterprise bean container.

16

EJB Container Java SE

Bean Validation

Jakarta Mail

Connectors

Jakarta Persistence

TMS

EJB Management

WS Metadata

Web Services

JACC
JASPIC

JAX-RS

JAX-WS

JTA

CDI

Dependency Injection

. New in Jakarta EE

Figure 8. Jakarta EE APIs in the enterprise bean Container

Figure 9, “Jakarta EE APIs in the Application Client Container” shows the availability of the Jakarta
EE APIs in the application client container.

Application Client Container Jakarta Persistence Java SE

Management

WS Metadata

Web Services

JMS
JAX-WS

Application Client

Bean Validation

Jakarta Mail

CDI

Dependency Injection

. New in Jakarta EE

Figure 9. Jakarta EE APISs in the Application Client Container

The following sections give a brief summary of the technologies required by the Jakarta EE
platform and the APIs used in Jakarta EE applications.

17

Jakarta Enterprise Beans Technology

An enterprise bean component, or enterprise bean, is a body of code that has fields and methods to
implement modules of business logic. You can think of an enterprise bean as a building block that
can be used alone or with other enterprise beans to execute business logic on the Jakarta EE server.

Enterprise beans are either session beans or message-driven beans.

* A session bean represents a transient conversation with a client. When the client finishes
executing, the session bean and its data are gone.

* A message-driven bean combines features of a session bean and a message listener, allowing a
business component to receive messages asynchronously. Commonly, these are Jakarta
Messaging messages.

The Jakarta EE 9 platform requires Jakarta Enterprise Beans 4.0 and Jakarta Interceptors 2.0.

Jakarta Servlet Technology

Jakarta Servlet technology lets you define HTTP-specific servlet classes. A servlet class extends the
capabilities of servers that host applications accessed by way of a request-response programming
model. Although servlets can respond to any type of request, they are commonly used to extend the
applications hosted by web servers.

In the Jakarta EE 8 platform, new Jakarta Servlet technology features include the following:

e Server Push

e HTTP Trailer

The Jakarta EE 9 platform requires Servlet 5.0.

Jakarta Faces Technology

Jakarta Faces technology is a user interface framework for building web applications. The main
components of Jakarta Faces technology are as follows:
* A GUI component framework.

A flexible model for rendering components in different kinds of HTML or different markup
languages and technologies. A Renderer object generates the markup to render the component
and converts the data stored in a model object to types that can be represented in a view.

* A standard RenderKit for generating HTML 4.01 markup.
The following features support the GUI components:

* Input validation

Event handling

Data conversion between model objects and components

Managed model object creation

Page navigation configuration

18

» Jakarta Expression Language
All this functionality is available using standard Java APIs and XML-based configuration files.
In the Jakarta EE 8 platform, new features of Jakarta Faces technology include the following:

* Direct support for WebSockets via the new <f:websocket> tag
* Class-level bean validation via the new <f:validateWholeBean> tag
* AJakarta Contexts and Dependency Injection compatible @ManagedProperty annotation

* Enhanced component search expression framework

The Jakarta EE 9 platform requires Jakarta Faces 3.0 and Jakarta Expression Language 4.0.

Jakarta Server Pages Technology

Jakarta Server Pages technology lets you put snippets of servlet code directly into a text-based
document. A Jakarta Server Pages page is a text-based document that contains two types of text:

« Static data, which can be expressed in any text-based format, such as HTML or XML

* JSP elements, which determine how the page constructs dynamic content

The Jakarta Server Pages technology is derived from and compatible with the JavaServer Pages
(JSP) technology.

For information about JSP technology, see The Java EE 5 Tutorial at https://docs.oracle.com/javaee/5/
tutorial/doc/.

The Jakarta EE 9 platform requires Jakarta Server Pages 3.0 for compatibility with earlier releases
but recommends the use of Facelets as the display technology in new applications.

Jakarta Standard Tag Library

The Jakarta Standard Tag Library encapsulates core functionality common to many Jakarta Server
Pages applications. Instead of mixing tags from numerous vendors in your Jakarta Server Pages
applications, you use a single, standard set of tags. This standardization allows you to deploy your
applications on any Jakarta Server Pages container that supports Jakarta Standard Tag Library and
makes it more likely that the implementation of the tags is optimized.

Jakarta Standard Tag Library has iterator and conditional tags for handling flow control, tags for
manipulating XML documents, internationalization tags, tags for accessing databases using SQL,
and tags for commonly used functions.

The Jakarta EE 9 platform requires Jakarta Standard Tag Library 2.0.

Jakarta Persistence

Jakarta Persistence is a Java standards-based solution for persistence. Persistence uses an
object/relational mapping approach to bridge the gap between an object-oriented model and a
relational database. The Jakarta Persistence can also be used in Java SE applications outside of the

19

https://docs.oracle.com/javaee/5/tutorial/doc/
https://docs.oracle.com/javaee/5/tutorial/doc/

Jakarta EE environment. Jakarta Persistence consists of the following areas:

* The Jakarta Persistence
* The query language

* Object/relational mapping metadata

The Jakarta EE 9 platform requires Jakarta Persistence 3.0.

Jakarta Transactions

Jakarta Transactions provides a standard interface for demarcating transactions. The Jakarta EE
architecture provides a default auto commit to handle transaction commits and rollbacks. An auto
commit means that any other applications that are viewing data will see the updated data after
each database read or write operation. However, if your application performs two separate
database access operations that depend on each other, you will want to use the Jakarta
Transactions to demarcate where the entire transaction, including both operations, begins, rolls
back, and commits.

The Jakarta EE 9 platform requires Jakarta Transactions 2.0.

Jakarta RESTful Web Services

Jakarta RESTful Web Services defines APIs for the development of web services built according to
the Representational State Transfer (REST) architectural style. A Jakarta RESTful application is a
web application that consists of classes packaged as a servlet in a WAR file along with required
libraries.

In the Jakarta EE 8 platform, new RESTful web services features include the following:

* Reactive Client API
When the results of an invocation on a target resource are received, enhancements to the
completion stage APIs in Java SE allow the sequence of those results to be specified, prioritized,
combined, or concatenated, and how exceptions can be handled.

* Enhancements in support for server-sent events
Clients may subscribe to server-issued event notifications using a long-running connection.
Support for a new media type, text/event-stream, has been added.

» Support for Jakarta JSON Binding objects, and improved integration with Jakarta Contexts and

Dependency Injection, Jakarta Servlet, and Jakarta Bean Validation technologies

The Jakarta EE 9 platform requires Jakarta RESTful Web Services 3.0.

Jakarta Managed Beans

Jakarta Managed Beans, lightweight container-managed objects (POJOs) with minimal
requirements, support a small set of basic services, such as resource injection, lifecycle callbacks,
and interceptors. Managed Beans represent a generalization of the managed beans specified by
Jakarta Faces technology and can be used anywhere in a Jakarta EE application, not just in web
modules.

20

The Jakarta Managed Beans specification is part of the Jakarta EE 9 platform specification. The
Jakarta EE 9 platform requires Jakarta Managed Beans 2.0.

Jakarta Contexts and Dependency Injection

Jakarta Contexts and Dependency Injection (CDI) defines a set of contextual services, provided by
Jakarta EE containers, that make it easy for developers to use enterprise beans along with Jakarta
Faces technology in web applications. Designed for use with stateful objects, CDI also has many
broader uses, allowing developers a great deal of flexibility to integrate different kinds of
components in a loosely coupled but typesafe way.

In the Jakarta EE 8 platform, new CDI features include the following:

An API for bootstrapping a CDI container in Java SE 8

 Support for observer ordering, which determines the order in which the observer methods for a
particular event are invoked, and support for firing events asynchronously

» Configurators interfaces, which are used for dynamically defining and modifying CDI objects

* Built-in annotation literals, a convenience feature for creating instances of annotations, and
more

The Jakarta EE 9 platform requires Jakarta Contexts and Dependency Injection 3.0.

Jakarta Dependency Injection

Jakarta Dependency Injection defines a standard set of annotations (and one interface) for use on
injectable classes.

In the Jakarta EE platform, CDI provides support for Dependency Injection. Specifically, you can use
injection points only in a CDI-enabled application.

The Jakarta EE 9 platform requires Jakarta Dependency Injection 2.0.

Jakarta Bean Validation

The Jakarta Bean Validation specification defines a metadata model and API for validating data in
JavaBeans components. Instead of distributing validation of data over several layers, such as the
browser and the server side, you can define the validation constraints in one place and share them
across the different layers.

In the Jakarta EE 8 platform, new Jakarta Bean Validation features include the following:

» Support for new features in Java SE 8, such as the Date-Time API

* Addition of new built-in Jakarta Bean Validation constraints

The Jakarta EE 9 platform requires Jakarta Bean Validation 3.0.

Jakarta Messaging

Jakarta Messaging is a messaging standard that allows Jakarta EE application components to create,

21

send, receive, and read messages. It enables distributed communication that is loosely coupled,
reliable, and asynchronous.

The Jakarta EE 9 platform requires Jakarta Messaging 3.0.

Jakarta Connectors

The Jakarta Connectors is used by tools vendors and system integrators to create resource adapters
that support access to enterprise information systems that can be plugged in to any Jakarta EE
product. A resource adapter is a software component that allows Jakarta EE application
components to access and interact with the underlying resource manager of the EIS. Because a
resource adapter is specific to its resource manager, a different resource adapter typically exists for
each type of database or enterprise information system.

The Jakarta Connectors also provides a performance-oriented, secure, scalable, and message-based
transactional integration of Jakarta EE platform-based web services with existing EISs that can be
either synchronous or asynchronous. Existing applications and EISs integrated through the Jakarta
Connectors into the Jakarta EE platform can be exposed as XML-based web services by using
Jakarta XML Web Services and Jakarta EE component models. Thus Jakarta XML Web Services and
the Jakarta Connectors are complementary technologies for enterprise application integration (EAI)
and end-to-end business integration.

The Jakarta EE 9 platform requires Jakarta Connectors 2.0.

Jakarta Mail

Jakarta EE applications use the Jakarta Mail to send email notifications. The Jakarta Mail has two
parts:

* An application-level interface used by the application components to send mail

* A service provider interface

The Jakarta EE platform includes the Jakarta Mail with a service provider that allows application
components to send Internet mail.

The Jakarta EE 9 platform requires Jakarta Mail 2.0.

Jakarta Authorization

The Jakarta Authorization specification defines a contract between a Jakarta EE application server
and an authorization policy provider. All Jakarta EE containers support this contract.

The Jakarta Authorization specification defines java.security.Permission classes that satisfy the
Jakarta EE authorization model. The specification defines the binding of container-access decisions
to operations on instances of these permission classes. It defines the semantics of policy providers
that use the new permission classes to address the authorization requirements of the Jakarta EE
platform, including the definition and use of roles.

The Jakarta EE 9 platform requires Jakarta Authorization 2.0.

22

Jakarta Authentication

The Jakarta Authentication specification defines a service provider interface (SPI) by which
authentication providers that implement message authentication mechanisms may be integrated in
client or server message-processing containers or runtimes. Authentication providers integrated
through this interface operate on network messages provided to them by their calling containers.
The authentication providers transform outgoing messages so that the source of each message can
be authenticated by the receiving container, and the recipient of the message can be authenticated
by the message sender. Authentication providers authenticate each incoming message and return
to their calling containers the identity established as a result of the message authentication.

The Jakarta EE 9 platform requires Jakarta Authentication 2.0.

Jakarta Security

Jakarta Security specification defines portable, plug-in interfaces for HTTP authentication and
identity stores, and an injectable SecurityContext interface that provides an API for programmatic
security.

Implementations of the HttpAuthenticationMechanism interface can be used to authenticate callers of
web applications. An application can supply its own HttpAuthenticationMechanism, or use one of the
default implementations provided by the container.

Implementations of the IdentityStore interface can be used to validate user credentials and
retrieve group information. An application can provide its own IdentityStore, or use the built in
LDAP or Database store.

The HttpAuthenticationMechanism and IdentityStore APIs provide an advantage over container-
provided implementations in that they allow an application to control the authentication process,
and the identity stores used for authentication, in a standard, portable way.

The SecurityContext API is intended for use by application code to query and interact with the
current security context. The specification also provides for default group-to-role mapping, and
defines a principal type called CallerPrincipal that can represent the identity of an application
caller.

The Jakarta EE 9 platform requires Jakarta Security 2.0.

Jakarta WebSocket

WebSocket is an application protocol that provides full-duplex communications between two peers
over TCP. Jakarta WebSocket enables Jakarta EE applications to create endpoints using annotations
that specify the configuration parameters of the endpoint and designate its lifecycle callback
methods.

The Jakarta EE 9 platform requires Jakarta WebSocket 2.0.

Jakarta JSON Processing

JavaScript Object Notation (JSON) is a text-based data exchange format derived from JavaScript that
is used in web services and other connected applications. Jakarta JSON Processing enables Jakarta

23

EE applications to parse, transform, and query JSON data using the object model or the streaming
model.

In the Jakarta EE 8 platform, new features of Jakarta JSON Processing include support for the
following:

* JSON Pointer
Defines a string syntax for referencing a specific value within a JSON document. JSON Pointer
includes APIs for extracting values from a target document and transforming them to create a
new JSON document.

* JSON Patch
Defines a format for expressing a sequence of operations to be applied to a JSON document.

* JSON Merge Patch
Defines a format and processing rules for applying operations to a JSON document that are
based upon specific content of the target document.

* The addition of editing and transformation functions to basic JSON document processing.

* Helper classes and methods, called JSON Collectors, which leverage features of the Stream API
that was introduced in Java SE 8.

The Jakarta EE 9 platform requires Jakarta JSON Processing 2.0.

Jakarta JSON Binding

Jakarta JSON Binding provides a binding layer for converting Java objects to and from JSON
messages. Jakarta JSON Binding also supports the ability to customize the default mapping process
used in this binding layer through the use of Java annotations for a given field, JavaBean property,
type or package, or by providing an implementation of a property naming strategy.

The Jakarta EE 9 platform requires Jakarta JSON Binding 2.0.

Jakarta Concurrency

Jakarta Concurrency is a standard API for providing asynchronous capabilities to Jakarta EE
application components through the following types of objects: managed executor service,
managed scheduled executor service, managed thread factory, and context service.

The Jakarta EE 9 platform requires Jakarta Concurrency 2.0.

Jakarta Batch

Batch jobs are tasks that can be executed without user interaction. The Batch Applications for the
Java Platform specification is a batch framework that provides support for creating and running
batch jobs in Java applications. The batch framework consists of a batch runtime, a job specification
language based on XML, a Java API to interact with the batch runtime, and a Java API to implement
batch artifacts.

The Jakarta EE 9 platform requires Jakarta Batch 2.0.

24

Jakarta Activation

The Jakarta Activation is used by the Jakarta Mail. Jakarta Activation provides standard services to
determine the type of an arbitrary piece of data, encapsulate access to it, discover the operations
available on it, and create the appropriate JavaBeans component to perform those operations.

The Jakarta EE 9 platform requires Jakarta Activation 2.0.

Jakarta XML Binding

The Jakarta XML Binding provides a convenient way to bind an XML schema to a representation in
Java language programs. XML Binding can be used independently or in combination with Jakarta
XML Web Services, in which case it provides a standard data binding for web service messages. All
Jakarta EE application client containers, web containers, and Jakarta Enterprise Beans containers
support the XML Binding API.

The Jakarta EE 9 platform requires Jakarta XML Binding 3.0.

Jakarta XML Web Services

The Jakarta XML Web Services specification provides support for web services that use the Jakarta
XML Binding API for binding XML data to Java objects. The Jakarta XML Web Services specification
defines client APIs for accessing web services as well as techniques for implementing web service
endpoints. The Enterprise Web Services specification describes the deployment of Jakarta XML Web
Services based services and clients. The Jakarta Enterprise Beans and Jakarta Servlet specifications
also describe aspects of such deployment. Jakarta XML Web Services based applications can be
deployed using any of these deployment models.

The Jakarta XML Web Services specification describes the support for message handlers that can
process message requests and responses. In general, these message handlers execute in the same
container and with the same privileges and execution context as the Jakarta XML Web Services
client or endpoint component with which they are associated. These message handlers have access
to the same JNDI namespace as their associated component. Custom serializers and deserializers, if
supported, are treated in the same way as message handlers.

The Jakarta EE 9 platform requires Jakarta XML Web Services 3.0.

Jakarta SOAP with Attachments

The Jakarta SOAP with Attachments is a low-level API on which Jakarta XML Web Services depends.
Jakarta SOAP with Attachments enables the production and consumption of messages that conform
to the SOAP 1.1 and 1.2 specifications and the Jakarta SOAP with Attachments note. Most developers
do not use the Jakarta SOAP with Attachments, instead using the higher-level Jakarta XML Web
Services APIL

Jakarta Annotations

Annotations enable a declarative style of programming in the Java platform.

The Jakarta EE 9 platform requires Jakarta Annotations 2.0.

25

Jakarta EE 9 APIs in the Java Platform, Standard Edition 8

Several APIs that are required by the Jakarta EE 9 platform are included in the Java Platform,
Standard Edition 8 (Java SE 8) and are thus available to Jakarta EE applications.

Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you invoke SQL commands from Java programming
language methods. You use the JDBC API in an enterprise bean when you have a session bean
access the database. You can also use the JDBC API from a servlet or a JSP page to access the
database directly without going through an enterprise bean.

The JDBC API has two parts:

* An application-level interface used by the application components to access a database

» A service provider interface to attach a JDBC driver to the Jakarta EE platform

The Jakarta EE 9 platform requires JDBC 4.1.

Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API provides naming and directory functionality,
enabling applications to access multiple naming and directory services, such as LDAP, DNS, and
NIS. The JNDI API provides applications with methods for performing standard directory
operations, such as associating attributes with objects and searching for objects using their
attributes. Using JNDI, a Jakarta EE application can store and retrieve any type of named Java
object, allowing Jakarta EE applications to coexist with many legacy applications and systems.

Jakarta EE naming services provide application clients, enterprise beans, and web components
with access to a JNDI naming environment. A naming environment allows a component to be
customized without the need to access or change the component’s source code. A container
implements the component’s environment and provides it to the component as a JNDI naming
context.

The naming environment provides four logical namespaces: java:comp, java:module, java:app, and
java:global for objects available to components, modules, or applications or shared by all deployed
applications. A Jakarta EE component can access named system-provided and user-defined objects.
The names of some system-provided objects, such as a default JDBC DataSource object, a default
Messaging connection factory, and a Transactions UserTransaction object, are stored in the
java:comp namespace. The Jakarta EE platform allows a component to name user-defined objects,
such as enterprise beans, environment entries, JDBC DataSource objects, and messaging
destinations.

A Jakarta EE component can also locate its environment naming context by using JNDI interfaces. A
component can create a javax.naming.InitialContext object and look up the environment naming
context in InitialContext under the name java:comp/env. A component’s naming environment is
stored directly in the environment naming context or in any of its direct or indirect subcontexts.

26

Java API for XML Processing

The Java API for XML Processing (JAXP), part of the Java SE platform, supports the processing of
XML documents using Document Object Model (DOM), Simple API for XML (SAX), and Extensible
Stylesheet Language Transformations (XSLT). JAXP enables applications to parse and transform
XML documents independently of a particular XML-processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might otherwise
have naming conflicts. Designed to be flexible, JAXP lets you use any XML-compliant parser or XSL
processor from within your application and supports the Worldwide Web Consortium (W3C)
schema. You can find information on the W3C schema at https://www.w3.org/XML/Schema.

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a Jakarta EE
application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programming language version of the standard Pluggable Authentication Module
(PAM) framework, which extends the Java platform security architecture to support user-based
authorization.

Eclipse GlassFish Server Tools

Eclipse GlassFish Server is a compliant implementation of the Jakarta EE platform. In addition to
supporting all the APIs described in the previous sections, Eclipse GlassFish Server includes a
number of Jakarta EE tools that are not part of the Jakarta EE platform but are provided as a
convenience to the developer.

This section briefly summarizes the tools that make up Eclipse GlassFish Server. Instructions for
starting and stopping Eclipse GlassFish Server, starting the Administration Console, and starting
and stopping Apache Derby are in
[intro:usingexamples::usingexamples:::_using_the_tutorial_examples].

Eclipse GlassFish Server contains the tools listed in Eclipse GlassFish Server Tools. Basic usage
information for many of the tools appears throughout the tutorial. For detailed information, see the
online help in the GUI tools.

Eclipse GlassFish Server Tools

Tool Description

Administration A web-based GUI Eclipse GlassFish Server administration
Console utility. Used to stop Eclipse GlassFish Server and to manage
users, resources, and applications.

asadmin A command-line Eclipse GlassFish Server administration utility.
Used to start and stop Eclipse GlassFish Server and to manage
users, resources, and applications.

appclient A command-line tool that launches the application client
container and invokes the client application packaged in the
application client JAR file.

27

https://www.w3.org/XML/Schema

Tool Description

capture-schema A command-line tool to extract schema information from a
database, producing a schema file that Eclipse GlassFish Server
can use for container-managed persistence.

package-appclient A command-line tool to package the application client
container libraries and JAR files.

Apache Derby A copy of Apache Derby database.

X]c A command-line tool to transform, or bind, a source XML
schema to a set of JAXB content classes in the Java
programming language.

schemagen A command-line tool to create a schema file for each
namespace referenced in your Java classes.

wsimport A command-line tool to generate Jakarta XML Web Services
portable artifacts for a given WSDL file. After generation, these
artifacts can be packaged in a WAR file with the WSDL and
schema documents, along with the endpoint implementation,
and then deployed.

wsgen A command-line tool to read a web service endpoint class and
generate all the required Jakarta XML Web Services portable
artifacts for web service deployment and invocation.

Using the Tutorial Examples

This chapter tells you everything you need to know to install, build, and run the tutorial examples.

For additional samples, see the GlassFish samples at https://github.com/eclipse-ee4j/glassfish-
samples/tree/master/ws/jakartaee9

Required Software
The following software is required to run the examples:

* Java Platform, Standard Edition

* Eclipse Glassfish Server

Jakarta EE Tutorial Examples
» Apache NetBeans IDE

* Apache Maven

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
Development Kit (JDK). You must use JDK 8 Update 20 or above. You can download JDK software
from https://www.oracle.com/technetwork/java/javase/downloads/index.html.

28

https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9
https://www.oracle.com/technetwork/java/javase/downloads/index.html

Eclipse Glassfish Server

GlassFish Server 6.0 is targeted as the build and runtime environment for the tutorial examples. To
build, deploy, and run the examples, you need a copy of GlassFish Server and, optionally, NetBeans
IDE. You can download GlassFish Server from https://glassfish.org/download.

GlassFish Server Installation Tips

GlassFish Server is installed from a ZIP file. It sets the default administration user name as admin
with no required password. The Admin Port is set to 4848, and the HTTP Port is set to 8080.

This tutorial refers to as-install-parent, the directory where you install GlassFish Server. For
example, the default installation directory on Microsoft Windows is C:\glassfish6, so as-install-
parent is C:\glassfish6. GlassFish Server itself is installed in as-install, the glassfish directory
under as-install-parent. So on Microsoft Windows, as-install is C:\glassfishb\glassfish.

After you install GlassFish Server, add the following directories to your PATH to avoid having to
specify the full path when you use commands:

as-install-parent/bin
as-install/bin

Jakarta EE Tutorial Examples

The tutorial example codes are located at https://github.com/eclipse-ee4j/jakartaee-examples

Clone or download this repository to your preferred location, this path is referenced in the tutorial
as the jakartaee-examples directory.

Apache NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for developing
Java applications, including enterprise applications. NetBeans IDE supports the Jakarta EE
platform. You can build, package, deploy, and run the tutorial examples from within NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from https://netbeans.apache.org/download/index.html.

To Add GlassFish Server as a Server Using NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as a server in
NetBeans IDE. Follow these instructions to add GlassFish Server to NetBeans IDE.

From the Tools menu, choose Servers.

In the Servers wizard, click Add Server.

Under Choose Server, select GlassFish Server and click Next.

Under Server Location, browse to the GlassFish Server installation and click Next.

S A

Under Domain Location, select Register Local Domain.

29

https://glassfish.org/download
https://github.com/eclipse-ee4j/jakartaee-examples
https://netbeans.apache.org/download/index.html

6. Click Finish.

Apache Maven

Maven is a Java technology-based build tool developed by the Apache Software Foundation and is
used to build, package, and deploy the tutorial examples. To run the tutorial examples from the
command line, you need Maven 3.0 or higher. If you do not already have Maven, you can install it
from:

https://maven.apache.org
Be sure to add the maven-install/bin directory to your path.

If you are using NetBeans IDE to build and run the examples, it includes a copy of Maven.

Starting and Stopping GlassFish Server

You can start and stop GlassFish Server using either NetBeans IDE or the command line.

To Start GlassFish Server Using NetBeans IDE

1. Click the Services tab.
2. Expand Servers.

3. Right-click the GlassFish Server instance and select Start.

To Stop GlassFish Server Using NetBeans IDE

To stop GlassFish Server using NetBeans IDE, right-click the GlassFish Server instance and select
Stop.

To Start GlassFish Server Using the Command Line

To start GlassFish Server from the command line, open a terminal window or command prompt
and execute the following:

asadmin start-domain --verbose
A domain is a set of one or more GlassFish Server instances managed by one administration server.

The following elements are associated with a domain:

 The GlassFish Server port number: The default is 8080.
* The administration server’s port number: The default is 4848.
* An administration user name and password: The default user name is admin, and by default no

password is required.

You specify these values when you install GlassFish Server. The examples in this tutorial assume
that you chose the default ports as well as the default user name and lack of password.

30

https://maven.apache.org

With no arguments, the start-domain command initiates the default domain, which is domain1. The
--verbose flag causes all logging and debugging output to appear on the terminal window or
command prompt. The output also goes into the server log, which is located in domain-
dir/logs/server.log.

To Stop GlassFish Server Using the Command Line

To stop GlassFish Server, open a terminal window or command prompt and execute:

asadmin stop-domain domaini

Starting the Administration Console

To administer GlassFish Server and manage users, resources, and Jakarta EE applications, use the
Administration Console tool. GlassFish Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://localhost:4848}/.

To Start the Administration Console Using NetBeans IDE

1. Click the Services tab.
2. Expand Servers.

3. Right-click the GlassFish Server instance and select View Domain Admin Console.

e NetBeans IDE uses your default web browser to open the Administration Console.

Starting and Stopping Apache Derby

GlassFish Server includes Apache Derby.

To Start Derby Using Command Line

To start Derby from the command line, open a terminal window or command prompt, change to
the as-install/bin directory, and execute:

asadmin start-database

To Stop Derby Using Command Line

To stop Derby from the command line, open a terminal window or command prompt, change to the
as-install/bin directory, and execute:

asadmin stop-database

For information about Apache Derby included with GlassFish Server, see the Release Notes that are

31

http://localhost:4848/

located in the as-install/javadb/ directory.

To Start Derby Using NetBeans IDE

When you start GlassFish Server using NetBeans IDE, the database server starts automatically. If
you ever need to start the server manually, however, follow these steps.

1. Click the Services tab.

2. Expand Databases.

3. Right-click Java DB and select Start Server.

To Stop Derby Using NetBeans IDE

To stop the database using NetBeans IDE, right-click Java DB and select Stop Server.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Maven.
Either NetBeans IDE or Maven may be used to build, package, deploy, and run the examples.
Directions for building the examples are provided in each chapter.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source files separate from compiled files,
the tutorial examples use the Maven application directory structure.

Each application module has the following structure:

e pom.xml: Maven build file

* src/main/java: Java source files for the module

» src/main/resources: configuration files for the module, with the exception of web applications

* src/main/webapp: web pages, style sheets, tag files, and images (web applications only)

 src/main/webapp/WEB-INF: configuration files for web applications (web applications only)
When an example has multiple application modules packaged into an EAR file, its submodule
directories use the following naming conventions:

» example-name-app-client: application clients

» example-name-ejb: enterprise bean JAR files

* example-name-war: web applications

* example-name-ear: enterprise applications

» example-name-common: library JAR containing components, classes, and files used by other

modules

The Maven build files (pom.xml) distributed with the examples contain goals to compile and
assemble the application into the target directory and deploy the archive to GlassFish Server.

32

Jakarta EE Maven Archetypes in the Tutorial

Some of the chapters have instructions on how to build an example application using Maven
archetypes. Archetypes are templates for generating a particular Maven project. The Tutorial
includes several Maven archetypes for generating Jakarta EE projects.

Installing the Tutorial Archetypes

You must install the included Maven archetypes into your local Maven repository before you can
create new projects based on the archetypes. You can install the archetypes using NetBeans IDE or
Maven.

Installing the Tutorial Archetypes Using NetBeans IDE

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:
jakartaee-examples/tutorial

1. Select the archetypes folder.

2. Click Open Project.

3. In the Projects tab, right-click the archetypes project and select Build.
Installing the Tutorial Archetypes Using Maven

1. In a terminal window, go to:
jakartaee-examples/tutorial/archetypes/
1. Enter the following command:

mvn install

Debugging Jakarta EE Applications

This section explains how to determine what is causing an error in your application deployment or
execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/logs/server.log. The log
contains output from GlassFish Server and your applications. You can log messages from any Java
class in your application with System.out.println and the Java Logging APIs (documented at
https://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html) and from web
components with the ServletContext.log method.

33

https://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html

If you use NetBeans IDE, logging output appears in the Output window as well as the server log.

If you start GlassFish Server with the --verbose flag, all logging and debugging output will appear
on the terminal window or command prompt and the server log. If you start GlassFish Server in the
background, debugging information is available only in the log. You can view the server log with a
text editor or with the Administration Console log viewer.

To Use the Administration Console Log Viewer

1. Select the GlassFish Server node.

2. Click View Log Files.
The log viewer opens and displays the last 40 entries.

3. To display other entries, follow these steps:
a. Click Modify Search.
b. Specify any constraints on the entries you want to see.

c. Click Search at the top of the log viewer.

Using a Debugger

GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With JPDA, you can
configure GlassFish Server to communicate debugging information using a socket.

To Debug an Application Using a Debugger

1. Follow these steps to enable debugging in GlassFish Server using the Administration Console:
a. Expand the Configurations node, then expand the server-config node.

b. Select the JVM Settings node. The default debug options are set to:

-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not in
use by GlassFish Server or another service.

c. Select the Debug Enabled check box.
d. Click Save.

2. Stop GlassFish Server and then restart it.

34

Platform Basics

Resource Creation

A resource is a program object that provides connections to such systems as database servers and
messaging systems. Jakarta EE components can access a wide variety of resources, including
databases, mail sessions, Jakarta Messaging objects, and URLs. The Jakarta EE platform provides
mechanisms that allow you to access all these resources in a similar manner. This chapter
examines several types of resources and explains how to create them.

Resources and JNDI Naming

In a distributed application, components need to access other components and resources, such as
databases. For example, a servlet might invoke remote methods on an enterprise bean that
retrieves information from a database. In the Jakarta EE platform, the Java Naming and Directory
Interface (JNDI) naming service enables components to locate other components and resources.

A resource is a program object that provides connections to systems, such as database servers and
messaging systems. A Java Database Connectivity resource is sometimes referred to as a data
source. Each resource object is identified by a unique, people-friendly name, called the JNDI name.
For example, the JNDI name of the preconfigured JDBC resource for Apache Derby shipped with
GlassFish Server is java:comp/DefaultDataSource.

An administrator creates resources in a JNDI namespace. In GlassFish Server, you can use either
the Administration Console or the asadmin command to create resources. Applications then use
annotations to inject the resources. If an application uses resource injection, GlassFish Server
invokes the JNDI API, and the application is not required to do so. However, it is also possible for an
application to locate resources by making direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory service. To
create a new resource, a new namej/object binding is entered into the JNDI namespace. You inject
resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you specify in an
annotation. Using a deployment descriptor allows you to change an application by repackaging it
rather than by both recompiling the source files and repackaging. However, for most applications a
deployment descriptor is not necessary.

DataSource Objects and Connection Pools

To store, organize, and retrieve data, most applications use a relational database. Jakarta EE
components may access relational databases through the JDBC API. For information on this API, see
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource has a set of
properties that identify and describe the real-world data source that it represents. These properties
include such information as the location of the database server, the name of the database, the
network protocol to use to communicate with the server, and so on. In GlassFish Server, a data

35

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can be thought of
as a factory for connections to the particular data source that the DataSource instance represents. In
a basic DataSource implementation, a call to the getConnection method returns a connection object
that is a physical connection to the data source.

A DataSource object may be registered with a JNDI naming service. If so, an application can use the
JNDI API to access that DataSource object, which can then be used to connect to the data source it
represents.

DataSource objects that implement connection pooling also produce a connection to the particular
data source that the DataSource class represents. The connection object that the getConnection
method returns is a handle to a PooledConnection object rather than a physical connection. An
application uses the connection object in the same way that it uses a connection. Connection
pooling has no effect on application code except that a pooled connection, like all connections,
should always be explicitly closed. When an application closes a connection that is pooled, the
connection is returned to a pool of reusable connections. The next time getConnection is called, a
handle to one of these pooled connections will be returned if one is available. Because connection
pooling avoids creating a new physical connection every time one is requested, applications can
run significantly faster.

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of available
connections to increase performance. When it requests a connection, an application obtains one
from the pool. When an application closes a connection, the connection is returned to the pool.

Applications that use Jakarta Persistence specify the DataSource object they are using in the jta-
data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The application code does
not refer to any JDBC objects.

Creating Resources Administratively

Before you deploy or run many applications, you may need to create resources for them. An
application can include a glassfish-resources.xml file that can be used to define resources for that
application and others. You can then use the asadmin command, specifying as the argument a file
named glassfish-resources.xml, to create the resources administratively, as shown.

asadmin add-resources glassfish-resources.xml

The glassfish-resources.xml file can be created in any project using NetBeans IDE or by hand. Some
of the Jakarta Messaging examples use this approach to resource creation. A file for creating the
resources needed for the Messaging simple producer example can be found in the

36

jms/simple/producer/src/main/setup directory.

You could also use the asadmin create-jms-resource command to create the resources for this
example. When you are done using the resources, you would use the asadmin list-jms-resources
command to display their names, and the asadmin delete-jms-resource command to remove them,
regardless of the way you created the resources.

Injection

This chapter provides an overview of injection in Jakarta EE and describes the two injection
mechanisms provided by the platform: resource injection and dependency injection.

Jakarta EE provides injection mechanisms that enable your objects to obtain references to
resources and other dependencies without having to instantiate them directly. You declare the
required resources and other dependencies in your classes by decorating fields or methods with
one of the annotations that mark the field as an injection point. The container then provides the
required instances at runtime. Injection simplifies your code and decouples it from the
implementations of its dependencies.

Resource Injection

Resource injection enables you to inject any resource available in the JNDI namespace into any
container-managed object, such as a servlet, an enterprise bean, or a managed bean. For example,
you can use resource injection to inject data sources, connectors, or custom resources available in
the JNDI namespace.

The type you use for the reference to the injected instance is usually an interface, which decouples
your code from the implementation of the resource.

For example, the following code injects a data source object that provides connections to the default
Apache Derby database shipped with Eclipse GlassFish Server:

public class MyServlet extends HttpServlet {
@Resource(name="java:comp/DefaultDataSource")
private javax.sql.DataSource dsc;

In addition to field-based injection as in the preceding example, you can inject resources using
method-based injection:

public class MyServlet extends HttpServlet {
private javax.sql.DataSource dsc;

@Resource(name="java:comp/DefaultDataSource")

public void setDsc(java.sql.DataSource ds) {
dsc = ds;

37

To use method-based injection, the setter method must follow the JavaBeans conventions for
property names: The method name must begin with set, have a void return type, and have only one
parameter.

The @Resource annotation is in the jakarta.annotation package and is defined in the Jakarta
Annotations spec. Resource injection resolves by name, so it is not typesafe: the type of the resource
object is not known at compile time, so you can get runtime errors if the types of the object and its
reference do not match.

Dependency Injection

Dependency injection enables you to turn regular Java classes into managed objects and to inject
them into any other managed object. Using dependency injection, your code can declare
dependencies on any managed object. The container automatically provides instances of these
dependencies at the injection points at runtime, and it also manages the lifecycle of these instances
for you.

Dependency injection in Jakarta EE defines scopes, which determine the lifecycle of the objects that
the container instantiates and injects. For example, a managed object that is only needed to
respond to a single client request (such as a currency converter) has a different scope than a
managed object that is needed to process multiple client requests within a session (such as a
shopping cart).

You can define managed objects (also called managed beans) that you can later inject by assigning a
scope to a regular class:

@jakarta.enterprise.context.RequestScoped
public class CurrencyConverter { ... }

Use the jakarta.inject.Inject annotation to inject managed beans; for example:

public class MyServlet extends HttpServlet {
@Inject CurrencyConverter cc;

As opposed to resource injection, dependency injection is typesafe because it resolves by type. To
decouple your code from the implementation of the managed bean, you can reference the injected
instances using an interface type and have your managed bean implement that interface.

For more information about dependency injection, see Introduction to Jakarta Contexts and
Dependency Injection and the Jakarta Contexts and Dependency Injection spec.

38

The Main Differences between Resource Injection and Dependency
Injection

Differences between Resource Injection and Dependency Injection lists the main differences
between resource injection and dependency injection.

Differences between Resource Injection and Dependency Injection

Injection Mechanism CanInjectJNDI Can Inject Resolves By Typesafe
Resources Regular Classes
Directly Directly
Resource Injection Yes No Resource name No
Dependency Injection No Yes Type Yes

Packaging

This chapter describes packaging. A Jakarta EE application is packaged into one or more standard
units for deployment to any Jakarta EE platform-compliant system. Each unit contains a functional
component or components, such as an enterprise bean, web page, servlet, or applet, and an
optional deployment descriptor that describes its content.

Packaging Applications

A Jakarta EE application is delivered in a Java Archive (JAR) file, a Web Archive (WAR) file, or an
Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar) file with a .war or .ear
extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a number of
different Jakarta EE applications using some of the same components. No extra coding is needed; it
is only a matter of assembling (or packaging) various Jakarta EE modules into Jakarta EE JAR, WAR,
or EAR files.

An EAR file (see Figure 10, “EAR File Structure”) contains Jakarta EE modules and, optionally,
deployment descriptors. A deployment descriptor, an XML document with an .xml extension,
describes the deployment settings of an application, a module, or a component. Because
deployment descriptor information is declarative, it can be changed without the need to modify the
source code. At runtime, the Jakarta EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

Deployment information is most commonly specified in the source code by annotations.
Deployment descriptors, if present, override what is specified in the source code.

39

Assembly Root

META-INF Web Application Resource EJB
Module Client Module Adapter Module Module
application.xml
glassfish-application.xml
(optional)

Figure 10. EAR File Structure

The two types of deployment descriptors are Jakarta EE and runtime. A Jakarta EE deployment
descriptor is defined by a Jakarta EE specification and can be used to configure deployment settings
on any Jakarta EE-compliant implementation. A runtime deployment descriptor is used to configure
Jakarta EE implementation-specific parameters. For example, the GlassFish Server runtime
deployment descriptor contains such information as the context root of a web application as well as
GlassFish Server implementation-specific parameters, such as caching directives. The GlassFish
Server runtime deployment descriptors are named glassfish-moduleType.xml and are located in the
same META-INF directory as the Jakarta EE deployment descriptor.

A Jakarta EE module consists of one or more Jakarta EE components for the same container type
and, optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations for
an enterprise bean. A Jakarta EE module can be deployed as a stand-alone module.

Jakarta EE modules are of the following types:

* Enterprise bean modules, which contain class files for enterprise beans and, optionally, an
enterprise bean deployment descriptor. Enterprise bean modules are packaged as JAR files with
a .jar extension.

* Web modules, which contain servlet class files, web files, supporting class files, GIF and HTML
files, and, optionally, a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (web archive) extension.

* Application client modules, which contain class files and, optionally, an application client
deployment descriptor. Application client modules are packaged as JAR files with a .jar
extension.

* Resource adapter modules, which contain all Java interfaces, classes, native libraries, and,
optionally, a resource adapter deployment descriptor. Together, these implement the Connector
architecture (see Jakarta Connectors) for a particular EIS. Resource adapter modules are
packaged as JAR files with an .rar (resource adapter archive) extension.

40

Packaging Enterprise Beans

This section explains how enterprise beans can be packaged in enterprise bean JAR or WAR
modules. It includes the following sections:
* Packaging Enterprise Beans in enterprise bean JAR Modules

» Packaging Enterprise Beans in WAR Modules

Packaging Enterprise Beans in enterprise bean JAR Modules

An enterprise bean JAR file is portable and can be used for various applications.

To assemble a Jakarta EE application, package one or more modules, such as enterprise bean JAR
files, into an EAR file, the archive file that holds the application. When deploying the EAR file that
contains the enterprise bean’s JAR file, you also deploy the enterprise bean to GlassFish Server. You
can also deploy an enterprise bean JAR that is not contained in an EAR file. Figure 11, “Structure of
an Enterprise Bean JAR” shows the contents of an enterprise bean JAR file.

Assembly Root

META-INF

All .class files
for this module

ejb-jar.xml MANIFEST.MF
glassfish-ejb-jar.xml

(optional)

Figure 11. Structure of an Enterprise Bean JAR

Packaging Enterprise Beans in WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application’s WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the WEB-
INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the WEB-
INF/11b directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml deployment descriptor.
If the application uses ejb-jar.xml, it must be located in the WAR module’s WEB-INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not considered
enterprise bean JAR files, even if the bundled JAR file conforms to the format of an enterprise bean

41

JAR file. The enterprise beans contained within the JAR file are semantically equivalent to
enterprise beans located in the WAR module’s WEB-INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

For example, suppose that a web application consists of a shopping cart enterprise bean, a credit
card-processing enterprise bean, and a Java servlet front end. The shopping cart bean exposes a
local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card—processing bean is packaged within its own JAR file, cc.jar, exposes a local, no-
interface view, and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses both CartBean and
CreditCardBean. The WAR module layout for this application is as follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/1ib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Packaging Web Archives

In the Jakarta EE architecture, a web module is the smallest deployable and usable unit of web
resources. A web module contains web components and static web content files, such as images,
which are called web resources. A Jakarta EE web module corresponds to a web application as
defined in the Jakarta Servlet specification.

In addition to web components and web resources, a web module can contain other files:

* Server-side utility classes, such as shopping carts

* Client-side classes, such as utility classes

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and archives,
and static web resources, such as images, are stored.

42

The document root contains a subdirectory named WEB-INF, which can contain the following files
and directories:

* classes, a directory that contains server-side classes: servlets, enterprise bean class files, utility
classes, and JavaBeans components

* lib, a directory that contains JAR files that contain enterprise beans, and JAR archives of
libraries called by server-side classes

* Deployment descriptors, such as web.xml (the web application deployment descriptor) and ejb-
jar.xml (an enterprise bean deployment descriptor)

A web module needs a web.xml file if it uses Jakarta Faces technology, if it must specify certain kinds
of security information, or if you want to override information specified by web component
annotations.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a Web Archive (WAR) file. Because the contents and use of WAR files differ from those of
JAR files, WAR file names use a .war extension. The web module just described is portable; you can
deploy it into any web container that conforms to the Jakarta Servlet specification.

You can provide a runtime deployment descriptor (DD) when you deploy a WAR on GlassFish
Server, but it is not required under most circumstances. The runtime DD is an XML file that may
contain such information as the context root of the web application, the mapping of the portable
names of an application’s resources to GlassFish Server resources, and the mapping of an
application’s security roles to users, groups, and principals defined in GlassFish Server. The
GlassFish Server web application runtime DD, if used, is named glassfish-web.xml and is located in
the WEB-INF directory. The structure of a web module that can be deployed on GlassFish Server is
shown in Figure 12, “Web Module Structure”.

Assembly Root
WEB-INF
lib classes Web pages
web.xml
glassfish-web.xml

(optional)

Library All server-side

archive files .class files for

this web module

Figure 12. Web Module Structure

43

Packaging Resource Adapter Archives

A Resource Adapter Archive (RAR) file stores XML files, Java classes, and other objects for Jakarta
EE Connector applications. A resource adapter can be deployed on any Jakarta EE server, much like
a Jakarta EE application. A RAR file can be contained in an Enterprise Archive (EAR) file, or it can
exist as a separate file.

The RAR file contains

* AJAR file with the implementation classes of the resource adapter
* An optional META-INF/ directory that can store an ra.xml file and/or an application

server-specific deployment descriptor used for configuration purposes

A RAR file can be deployed on the application server as a standalone component or as part of a
larger application. In both cases, the adapter is available to all applications using a lookup
procedure.

44

The Web Tier

Getting Started with Web Applications

This chapter introduces web applications, which typically use Jakarta Faces technology and/or
Jakarta Servlet technology.

Web Applications

A web application is a dynamic extension of a web or application server. Web applications are of
the following types:

Presentation-oriented

A presentation-oriented web application generates interactive web pages containing various
types of markup language (HTML, XHTML, XML, and so on) and dynamic content in response to
requests. Development of presentation-oriented web applications is covered in [web:faces-
intro::faces-intro:::_jakarta_faces_technology] through
[web:servlets::servlets:::_jakarta_servlet_technology]

Service-oriented

A service-oriented web application implements the endpoint of a web service. Presentation-
oriented applications are often clients of service-oriented web applications. Development of
service-oriented web applications is covered in
[websvcs:jaxws::jaxws:::_building web_services_with_jakarta_xml web_services] and
[websvcs:rest::rest:::_building_restful web_services_with_jakarta_rest].

In the Jakarta EE platform, web components provide the dynamic extension capabilities for a web
server. Web components can be Jakarta servlets, web pages implemented with Jakarta Faces
technology, web service endpoints, or Jakarta Server Pages. Jakarta Web Application Request
Handling illustrates the interaction between a web client and a web application that uses a servlet.
The client sends an HTTP request to the web server. A web server that implements Jakarta Servlet
and Jakarta Server Pages technology converts the request into an HTTPServletRequest object. This
object is delivered to a web component, which can interact with JavaBeans components or a
database to generate dynamic content. The web component can then generate an
HTTPServletResponse or can pass the request to another web component. A web component
eventually generates a HTTPServletResponse object. The web server converts this object to an HTTP
response and returns it to the client.

45

—

HttpServlet -_—

®'HTTP Request — ™ Request Web 4@_>*

Components L

Database
Web
Client

—_—

' @ | | HttpServlet JavaBeans 4—(:)
HTTP Response Response Components =
Database

Figure 13. Jakarta Web Application Request Handling

Servlets are Java programming language classes that dynamically process requests and construct
responses. Java technologies, such as Jakarta Faces and Facelets, are used for building interactive
web applications. (Frameworks can also be used for this purpose.) Although servlets and Jakarta
Faces and Facelets pages can be used to accomplish similar things, each has its own strengths.
Servlets are best suited for service-oriented applications (web service endpoints can be
implemented as servlets) and the control functions of a presentation-oriented application, such as
dispatching requests and handling nontextual data. Jakarta Faces and Facelets pages are more
appropriate for generating text-based markup, such as XHTML, and are generally used for
presentation-oriented applications.

Web components are supported by the services of a runtime platform called a web container. A
web container provides such services as request dispatching, security, concurrency, and lifecycle
management. A web container also gives web components access to such APIs as naming,
transactions, and email.

Certain aspects of web application behavior can be configured when the application is installed, or
deployed, to the web container. The configuration information can be specified using Jakarta EE
annotations or can be maintained in a text file in XML format called a web application deployment
descriptor (DD). A web application DD must conform to the schema described in the Jakarta Servlet
specification.

This chapter gives a brief overview of the activities involved in developing web applications. First,
it summarizes the web application lifecycle and explains how to package and deploy very simple
web applications on GlassFish Server. The chapter then moves on to configuring web applications
and discusses how to specify the most commonly used configuration parameters.

Web Application Lifecycle

A web application consists of web components; static resource files, such as images and cascading
style sheets (CSS); and helper classes and libraries. The web container provides many supporting
services that enhance the capabilities of web components and make them easier to develop.
However, because a web application must take these services into account, the process for creating
and running a web application is different from that of traditional stand-alone Java classes.

The process for creating, deploying, and executing a web application can be summarized as follows:

1. Develop the web component code.

46

2. Develop the web application deployment descriptor, if necessary.

3. Compile the web application components and helper classes referenced by the components.

4. Optionally, package the application into a deployable unit.

5. Deploy the application into a web container.

6. Access a URL that references the web application.
Developing web component code is covered in the later chapters. Steps 2 through 4 are expanded
on in the following sections and illustrated with a Hello, World-style, presentation-oriented

application. This application allows a user to enter a name into an HTML form and then displays a
greeting after the name is submitted.

The Hello application contains two web components that generate the greeting and the response.
This chapter discusses the following simple applications:

* hellol, a Jakarta Faces technology-based application that uses two XHTML pages and a
managed bean

* hello2, a servlet-based web application in which the components are implemented by two
servlet classes

The applications are used to illustrate tasks involved in packaging, deploying, configuring, and
running an application that contains web components.

A Web Module That Uses Jakarta Faces Technology: The hellol Example

The hellol application is a web module that uses Jakarta Faces technology to display a greeting and
response. You can use a text editor to view the application files, or you can use NetBeans IDE.

The source code for this application is in the jakartaee-examples/tutorial/web/faces/hellol/
directory.

To View the hellol Web Module Using NetBeans IDE
To view the hello1 web module using NetBeans IDE:

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:
jakartaee-examples/tutorial/web/faces

3. Select the hello1 folder and click Open Project.

4. Expand the Web Pages node and double-click the index.xhtml file to view it in the editor.

The index.xhtml file is the default landing page for a Facelets application. In a typical Facelets
application, web pages are created in XHTML. For this application, the page uses simple tag
markup to display a form with a graphic image, a header, a field, and two command buttons:

47

48

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://xmlns.jcp.org/jsf/htm1">
<h:head>
<title>Facelets Hello Greeting</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="#{resource['images:duke.waving.gif']}"
alt="Duke waving his hand"/>
<h2>Hello, my name is Duke. What's yours?</h2>
<h:inputText id="username"
title="My name is:
value="#{hello.name}"
required="true"
requiredMessage="Error: A name is required."
maxlength="25" />

<p></p>
<h:commandButton id="submit" value="Submit" action="response">
</h:commandButton>
<h:commandButton id="reset" value="Reset" type="reset">
</h:commandButton>

</h:form>

</h:body>
</html>

The most complex element on the page is the inputText field. The maxlength attribute specifies
the maximum length of the field. The required attribute specifies that the field must be filled
out; the requiredMessage attribute provides the error message to be displayed if the field is left
empty. The title attribute provides the text to be used by screen readers for the visually
disabled. Finally, the value attribute contains an expression that will be provided by the Hello
managed bean.

The web page connects to the Hello managed bean through the Expression Language (EL) value
expression #{hello.name}, which retrieves the value of the name property from the managed
bean. Note the use of hello to reference the managed bean Hello. If no name is specified in the
@Named annotation of the managed bean, the managed bean is always accessed with the first
letter of the class name in lowercase.

The Submit commandButton element specifies the action as response, meaning that when the
button is clicked, the response.xhtml page is displayed.

Double-click the response.xhtml file to view it.

The response page appears.Even simpler than the greeting page, the response page contains a
graphic image, a header that displays the expression provided by the managed bean, and a

single button whose action element transfers you back to the index.xhtml page:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
<title>Facelets Hello Response</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage url="#{resource['images:duke.waving.gif']}"
alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p></p>
<h:commandButton id="back" value="Back" action="1index" />
</h:form>
</h:body>
</html>

6. Expand the Source Packages node, then the ee.jakarta.tutorial.hello1 node.
7. Double-click the Hello.java file to view it.
The Hello class, called a managed bean class, provides getter and setter methods for the name

property used in the Facelets page expressions. By default, the expression language refers to the
class name, with the first letter in lowercase (hello.name).

package ee.jakarta.tutorial.hellol;

import jakarta.enterprise.context.RequestScoped;
import jakarta.inject.Named;

@Named
@RequestScoped
public class Hello {

private String name;

public Hello() {
}

public String getName() {
return name;

}

public void setName(String user_name) {
this.name = user_name;

}

49

If you use the default name for the bean class, you can specify @Model as the annotation instead
of having to specify both @Named and @RequestScoped. The @Model annotation is called a stereotype,
a term for an annotation that encapsulates other annotations. It is described later in Using
Stereotypes in CDI Applications. Some examples will use @Model where it is appropriate.

8. Under the Web Pages node, expand the WEB-INF node and double-click the web.xml file to view
it.

The web.xml file contains several elements that are required for a Facelets application. All of the
following are created automatically when you use NetBeans IDE to create an application.

- A context parameter specifying the project stage:

<context-param>
<param-name>jakarta.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>

A context parameter provides configuration information needed by a web application. An
application can define its own context parameters. In addition, Jakarta Faces technology and
Jakarta Servlet technology define context parameters that an application can use.

o A servlet element and its servlet-mapping element specifying the FacesServlet. All files with
the .xhtml suffix will be matched:

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>

</servlet-mapping>

o Awelcome-file-list element specifying the location of the landing page:

<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>

Introduction to Scopes

In the Hello.java class, the annotations jakarta.inject.Named and
jakarta.enterprise.context.RequestScoped identify the class as a managed bean using request

50

scope. Scope defines how application data persists and is shared.
The most commonly used scopes in Jakarta Faces applications are the following:

Request (@RequestScoped)

Request scope persists during a single HTTP request in a web application. In an application like
hello1, in which the application consists of a single request and response, the bean uses request
scope.

Session (@SessionScoped)

Session scope persists across multiple HTTP requests in a web application. When an application
consists of multiple requests and responses where data needs to be maintained, beans use
session scope.

Application (@ApplicationScoped)

Application scope persists across all users' interactions with a web application.

For more information on scopes in Jakarta Faces technology, see Using Managed Bean Scopes.

Packaging and Deploying the hellol Web Module

A web module must be packaged into a WAR in certain deployment scenarios and whenever you
want to distribute the web module. You can package a web module into a WAR file by using Maven
or by using the IDE tool of your choice. This tutorial shows you how to use NetBeans IDE or Maven
to build, package, and deploy the hello1 sample application.

You can deploy a WAR file to GlassFish Server by:

» Using NetBeans IDE
* Using the asadmin command
* Using the Administration Console

* Copying the WAR file into the domain-dir/autodeploy/ directory
Throughout the tutorial, you will use NetBeans IDE or Maven for packaging and deploying.
To Build and Package the hellol Web Module Using NetBeans IDE
To build and package the hellol web module using NetBeans IDE:

1. Start GlassFish Server as described in To Start GlassFish Server Using NetBeans IDE, if you have
not already done so.

2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4. Select the hello1 folder.

31

5. Click Open Project.

6. In the Projects tab, right-click the hellol project and select Build. This command deploys the
project to the server.

To Build and Package the hellol Web Module Using Maven
To build and package the hellol web module using Maven:

1. Start GlassFish Server as described in To Start GlassFish Server Using the Command Line, if you
have not already done so.

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/hello1/

3. Enter the following command:

mvn install

This command spawns any necessary compilations and creates the WAR file in _jakartaee-
examples/tutorial/web/faces/hello1/target/. It then deploys the project to the server.

Viewing Deployed Web Modules

GlassFish Server provides two ways to view the deployed web modules: the Administration Console
and the asadmin command. You can also use NetBeans IDE to view deployed modules.

To View Deployed Web Modules Using the Administration Console
To view deployed web modules using the Administration Console:

1. Open the URL http://localhost:4848/ in a browser.

2. Select the Applications node.

The deployed web modules appear in the Deployed Applications table.

To View Deployed Web Modules Using the asadmin Command

Enter the following command:

asadmin list-applications

To View Deployed Web Modules Using NetBeans IDE

To view deployed web modules using NetBeans IDE:

1. In the Services tab, expand the Servers node, then expand the GlassFish Server node.

32

http://localhost:4848/

2. Expand the Applications node to view the deployed modules.

Running the Deployed hellol Web Module

Now that the web module is deployed, you can view it by opening the application in a web browser.
By default, the application is deployed to host localhost on port 8080. The context root of the web
application is hello1.

To run the deployed hellol web module:

1. Open a web browser.

2. Enter the following URL:

http://localhost:8080/hellol1/

3. In the field, enter your name and click Submit.

The response page displays the name you submitted. Click Back to try again.

Dynamic Reloading of Deployed Modules

If dynamic reloading is enabled, you do not have to redeploy an application or module when you
change its code or deployment descriptors. All you have to do is copy the changed pages or class
files into the deployment directory for the application or module. The deployment directory for a
web module named context-root is domain-dir/applications/context-root. The server checks for
changes periodically and redeploys the application, automatically and dynamically, with the
changes.

This capability is useful in a development environment because it allows code changes to be tested
quickly. Dynamic reloading is not recommended for a production environment, however, because
it may degrade performance. In addition, whenever a reload takes place, the sessions at that time
become invalid, and the client must restart the session.

In GlassFish Server, dynamic reloading is enabled by default.

Undeploying the hellol Web Module

You can undeploy web modules and other types of enterprise applications by using either NetBeans
IDE or Maven.

To Undeploy the hellol Web Module Using NetBeans IDE

To undeploy the hello1 web module using NetBeans IDE:
1. In the Services tab, expand the Servers node, then expand the GlassFish Server node.
2. Expand the Applications node.

3. Right-click the hello1 module and select Undeploy.

4. To delete the class files and other build artifacts, go back to the Projects tab, right-click the

33

project, and select Clean.

To Undeploy the hellol Web Module Using Maven

To undeploy the hello1 web module using Maven:

1. In a terminal window, go to:
jakartaee-examples/tutorial/web/faces/hello1/
2. Enter the following command:
mvn cargo:undeploy
3. To delete the class files and other build artifacts, enter the following command:

mvn clean

A Web Module That Uses Jakarta Servlet Technology: The hello2 Example

The hello2 application is a web module that uses Jakarta Servlet technology to display a greeting
and response. You can use a text editor to view the application files, or you can use NetBeans IDE.

The source code for this application is in the jakartaee-examples/tutorial/web/servlet/hello2/
directory.

Mapping URLs to Web Components

When it receives a request, the web container must determine which web component should
handle the request. The web container does so by mapping the URL path contained in the request to
a web application and a web component. A URL path contains the context root and, optionally, a
URL pattern:

http://host:port/context-root[/url-pattern]

You set the URL pattern for a servlet by using the @WebServlet annotation in the servlet source file.
For example, the GreetingServlet.java file in the hello2 application contains the following
annotation, specifying the URL pattern as /greeting:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

}

This annotation indicates that the URL pattern /greeting follows the context root. Therefore, when

54

the servlet is deployed locally, it is accessed with the following URL:

http://localhost:8080/hello2/greeting

To access the servlet by using only the context root, specify "/" as the URL pattern.

Examining the hello2 Web Module

The hello2 application behaves almost identically to the hello1 application, but it is implemented
using Jakarta Servlet technology instead of Jakarta Faces technology. You can use a text editor to
view the application files, or you can use NetBeans IDE.

To View the hello2 Web Module Using NetBeans IDE

To view the hello2 web module using NetBeans IDE:

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/servlet

3. Select the hello2 folder and click Open Project.
4. Expand the Source Packages node, then expand the ee.jakarta.tutorial.hello2 node.

5. Double-click the GreetingServlet.java file to view it.

This servlet overrides the doGet method, implementing the GET method of HTTP. The servlet
displays a simple HTML greeting form whose Submit button, like that of hellol, specifies a
response page for its action. The following excerpt begins with the @WebServlet annotation,
which specifies the URL pattern relative to the context root:

@WebServlet("/greeting")
public class GreetingServlet extends HttpServlet {

@0verride

public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {

response.setContentType("text/html");
response.setBufferSize(8192);
try (PrintWriter out = response.getWriter()) {
out.println("<html lang=\"en\">"
+ "<head><title>Servlet Hello</title></head>");

// then write the data of the response

out.println("<body bgcolor=\"#ffffff\">"
+ "<img src=\"duke.waving.gif\" "

55

"alt=\"Duke waving his hand\">"
"<form method=\"get\">"

"<h2>Hello, my name is Duke. What's yours?</h2>"
"<input title=\"My name is: \"type=\"text\" "
"name=\"username\" size=\"25\">"

"<p></p>"

"<input type=\"submit\" value=\"Submit\">"

"<input type=\"reset\" value=\"Reset\">
"</form>");

+ 4+ + + 4+ + + + +

String username = request.getParameter("username");
if (username != null && username.length() > @) {
RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/response");

if (dispatcher != null) {
dispatcher.include(request, response);
}

}
out.println("</body></htm1>");

6. Double-click the ResponseServlet.java file to view it.

This servlet also overrides the doGet method, displaying only the response. The following
excerpt begins with the @WebServlet annotation, which specifies the URL pattern relative to the
context root:

@WebServlet("/response")
public class ResponseServlet extends HttpServlet {

@0verride
public void doGet(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
try (PrintWriter out = response.getWriter()) {

// then write the data of the response

String username = request.getParameter("username");

if (username != null && username.length() > @) {
out.println("<h2>Hello, " + username + "!</h2>");

}

36

Running the hello2 Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the hello2 example.

To Run the hello2 Example Using NetBeans IDE

To run the hello2 example using NetBeans IDE:

1.

Start GlassFish Server as described in To Start GlassFish Server Using NetBeans IDE, if you have
not already done so.

From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/servlet

Select the hello2 folder.
Click Open Project.

In the Projects tab, right-click the hello2 project and select Build to package and deploy the
project.

In a web browser, open the following URL:

http://localhost:8080/hello2/greeting

The URL specifies the context root, followed by the URL pattern.

The application looks much like the hellol application. The major difference is that after you
click Submit the response appears below the greeting, not on a separate page.

To Run the hello2 Example Using Maven

To run the hello2 example using Maven:

1.

2.

3.

Start GlassFish Server as described in To Start GlassFish Server Using the Command Line, if you
have not already done so.
In a terminal window, go to:
jakartaee-examples/tutorial/web/servlet/hello2/
Enter the following command:

mvn install

This target builds the WAR file, copies it to the jakartaee-examples/tutorial/web/hello2/target/
directory, and deploys it.

57

4.

In a web browser, open the following URL:

http://localhost:8080/hello2/greeting

The URL specifies the context root, followed by the URL pattern.

The application looks much like the hellol application. The major difference is that after you
click Submit the response appears below the greeting, not on a separate page.

Configuring Web Applications

This section describes the following tasks involved with configuring web applications:

Setting context parameters
Declaring welcome files
Mapping errors to error screens

Declaring resource references

Setting Context Parameters

The web components in a web module share an object that represents their application context.
You can pass context parameters to the context, or you can pass initialization parameters to a
servlet. Context parameters are available to the entire application. For information on initialization
parameters, see Creating and Initializing a Servlet.

To Add a Context Parameter Using NetBeans IDE

These steps apply generally to web applications but do not apply specifically to the examples in this
chapter.

To add a context parameter using NetBeans IDE:

L

38

® N o«

Open the project.

Expand the project’s node in the Projects tree.

Expand the Web Pages node and then the WEB-INF node.

Double-click web.xml.

If the project does not have a web.xml file, create one by following the steps in To Create a
web.xml File Using NetBeans IDE.

Click General at the top of the editor window.

Expand the Context Parameters node.

Click Add.

In the Add Context Parameter dialog box, in the Parameter Name field, enter the name that
specifies the context object.

9. In the Parameter Value field, enter the parameter to pass to the context object.

10. Click OK.

To Create a webh.xml File Using NetBeans IDE

To create a web.xml file using NetBeans IDE:

1. From the File menu, choose New File.

2. In the New File wizard, select the Web category, then select Standard Deployment Descriptor
under File Types.

3. Click Next.
4. Click Finish.

A basic web.xml file appears in web/WEB-INF/.

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the web container can append
to a request for a URL (called a valid partial request) that is not mapped to a web component. For
example, suppose that you define a welcome file welcome.html. When a client requests a URL such
as host:port/webapp/directory, where directory is not mapped to a servlet or XHTML page, the file
host:port/webapp/directory/welcome.html is returned to the client.

If a web container receives a valid partial request, the web container examines the welcome file
list, appends to the partial request each welcome file in the order specified, and checks whether a
static resource or servlet in the WAR is mapped to that request URL. The web container then sends
the request to the first resource that matches in the WAR.

If no welcome file is specified, GlassFish Server will use a file named index.html as the default
welcome file. If there is no welcome file and no file named index.html, GlassFish Server returns a
directory listing.

You specify welcome files in the web.xml file. The welcome file specification for the hellol example
looks like this:

<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
</welcome-file-list>

A specified welcome file must not have a leading or trailing slash (/).

The hello2 example does not specify a welcome file, because the URL request is mapped to the
GreetingServlet web component through the URL pattern /greeting.

Mapping Errors to Error Screens

When an error occurs during execution of a web application, you can have the application display
a specific error screen according to the type of error. In particular, you can specify a mapping

39

between the status code returned in an HTTP response or a Java programming language exception
returned by any web component and any type of error screen.

You can have multiple error-page elements in your deployment descriptor. Each element identifies
a different error that causes an error page to open. This error page can be the same for any number
of error-page elements.

To Set Up Error Mapping Using NetBeans IDE

These steps apply generally to web applications but do not apply specifically to the examples in this
chapter.

To set up error mapping using NetBeans IDE:

1. Open the project.

2. Expand the project’s node in the Projects tab.

3. Expand the Web Pages node and then the WEB-INF node.

4. Double-click web.xml.
If the project does not have a web.xml file, create one by following the steps in To Create a
web.xml File Using NetBeans IDE.

5. Click Pages at the top of the editor window.

6. Expand the Error Pages node.

7. Click Add.

8. In the Add Error Page dialog box, click Browse to locate the page that you want to act as the

error page.
9. Specify either an error code or an exception type.

> To specify an error code, in the Error Code field enter the HTTP status code that will cause
the error page to be opened, or leave the field blank to include all error codes.

- To specify an exception type, in the Exception Type field enter the exception that will cause
the error page to load. To specify all throwable errors and exceptions, enter
java.lang.Throwable.

10. Click OK.

Declaring Resource References

If your web component uses such objects as enterprise beans, data sources, or web services, you
use Jakarta EE annotations to inject these resources into your application. Annotations eliminate a
lot of the boilerplate lookup code and configuration elements that previous versions of Jakarta EE
required.

Although resource injection using annotations can be more convenient for the developer, there are
some restrictions on using it in web applications. First, you can inject resources only into container-
managed objects, because a container must have control over the creation of a component so that it
can perform the injection into a component. As a result, you cannot inject resources into such

60

objects as simple JavaBeans components. However, managed beans are managed by the container;
therefore, they can accept resource injections.

Components that can accept resource injections are listed in Web Components That Accept
Resource Injections.

This section explains how to use a couple of the annotations supported by a web container to inject
resources. [persist:persistence-basicexamples::persistence-
basicexamples:::_running the_persistence_examples], explains how web applications use
annotations supported by Jakarta Persistence. [security:security-webtier::security-
webtier:::_getting_started_securing web_applications], explains how to use annotations to specify
information about securing web applications. See
[supporttechs:resources::resources:::_resource_adapters_and_contracts], for more information on
resources.

Web Components That Accept Resource Injections

Component Interface/Class

Servlets jakarta.servlet.Servlet

Servlet filters jakarta.servlet.ServletFilt
er

Event listeners jakarta.servlet.ServletCont
extListener

jakarta.servlet.ServletCont
extAttributelistener

jakarta.servlet.ServletRequ
estListener

jakarta.servlet.ServletRequ
estAttributelistener

jakarta.servlet.http.HttpSe
ssionListener

jakarta.servlet.http.HttpSe
ssionAttributelistener

jakarta.servlet.http.HttpSe
ssionBindinglListener

Managed beans Plain Old Java Objects

Declaring a Reference to a Resource

The @Resource annotation is used to declare a reference to a resource, such as a data source, an
enterprise bean, or an environment entry.

The @Resource annotation is specified on a class, a method, or a field. The container is responsible
for injecting references to resources declared by the @Resource annotation and mapping it to the

61

proper JNDI resources.

In the following example, the @Resource annotation is used to inject a data source into a component
that needs to make a connection to the data source, as is done when using JDBC technology to
access a relational database:

@Resource javax.sql.DataSource catalogDS;

public getProductsByCategory() {
// get a connection and execute the query
Connection conn = catalogDS.getConnection();

The container injects this data source prior to the component’s being made available to the
application. The data source JNDI mapping is inferred from the field name, catalogDS, and the type,
javax.sql.DataSource.

If you have multiple resources that you need to inject into one component, you need to use the
@Resources annotation to contain them, as shown by the following example:

@Resources ({
@Resource(name="myDB" type=javax.sql.DataSource.class),
@Resource(name="myMQ" type=jakarta.jms.ConnectionFactory.class)

1))

The web application examples in this tutorial use Jakarta Persistence to access relational databases.
This API does not require you to explicitly create a connection to a data source. Therefore, the
examples do not use the @Resource annotation to inject a data source. However, this API supports
the @PersistencelUnit and @PersistenceContext annotations for injecting EntityManagerFactory and
EntityManager instances, respectively. [persist:persistence-basicexamples::persistence-
basicexamples:::_running_the_persistence_examples] describes these annotations and the use of
the Jakarta Persistence in web applications.

Declaring a Reference to a Web Service

The @WebServiceRef annotation provides a reference to a web service. The following example shows
uses the @WebServiceRef annotation to declare a reference to a web service. WebServiceRef uses the
wsdlLocation element to specify the URI of the deployed service’s WSDL file:

import jakarta.xml.ws.WebServiceRef;
public class ResponseServlet extends HTTPServlet {

@WebServiceRef(wsdlLocation="http://localhost:8080/helloservice/hello?wsdl")
static HelloService service;

62

Further Information about Web Applications

For more information on web applications, see
* Jakarta Faces 3.0 specification:
https://jakarta.ee/specifications/faces/3.0/

* Jakarta Servlet 5.0 specification:
https://jakarta.ee/specifications/servlet/5.0/

Jakarta Faces Technology

Jakarta Faces technology is a server-side component framework for building Java technology-based
web applications.

Introduction to Jakarta Faces Technology

Jakarta Faces technology consists of the following:

* An API for representing components and managing their state; handling events, server-side
validation, and data conversion; defining page navigation; supporting internationalization and
accessibility; and providing extensibility for all these features

» Tag libraries for adding components to web pages and for connecting components to server-side

objects

Jakarta Faces technology provides a well-defined programming model and various tag libraries.
The tag libraries contain tag handlers that implement the component tags. These features
significantly ease the burden of building and maintaining web applications with server-side user
interfaces (UIs). With minimal effort, you can complete the following tasks.

* Create a web page.

* Drop components onto a web page by adding component tags.

* Bind components on a page to server-side data.

* Wire component-generated events to server-side application code.

» Save and restore application state beyond the life of server requests.

* Reuse and extend components through customization.
This chapter provides an overview of Jakarta Faces technology. After explaining what a Jakarta
Faces application is and reviewing some of the primary benefits of using Jakarta Faces technology,
this chapter describes the process of creating a simple Jakarta Faces application. This chapter also

introduces the Jakarta Faces lifecycle by describing the example Jakarta Faces application and its
progression through the lifecycle stages.

What Is a Jakarta Faces Application?

The functionality provided by a Jakarta Faces application is similar to that of any other Java web
application. A typical Jakarta Faces application includes the following parts.

63

https://jakarta.ee/specifications/faces/3.0/
https://jakarta.ee/specifications/servlet/5.0/

A set of web pages in which components are laid out.

A set of tags to add components to the web page.

A set of managed beans, which are lightweight, container-managed objects (POJOs). In a Jakarta
Faces application, managed beans serve as backing beans, which define properties and
functions for Ul components on a page.

* A web deployment descriptor (web.xml file).

* Optionally, one or more application configuration resource files, such as a faces-config.xml file,
which can be used to define page navigation rules and configure beans and other custom
objects, such as custom components.

* Optionally, a set of custom objects, which can include custom components, validators,
converters, or listeners, created by the application developer.

* Optionally, a set of custom tags for representing custom objects on the page.
Figure 14, “Responding to a Client Request for a Jakarta Faces Page” shows the interaction between

client and server in a typical Jakarta Faces application. In response to a client request, a web page is
rendered by the web container that implements Jakarta Faces technology.

Web Container

myfacelet.xhml

Browser

>
aﬂaaaa

Access page

(HTTP Request)
Generates
Component
Tree
Renders HTML myView
(HTTP Response)

Figure 14. Responding to a Client Request for a Jakarta Faces Page

The web page, myfacelet.xhtml, is built using Jakarta Faces component tags. Component tags are
used to add components to the view (represented by myView in the diagram), which is the server-side
representation of the page. In addition to components, the web page can also reference objects,
such as the following:

* Any event listeners, validators, and converters that are registered on the components
* The JavaBeans components that capture the data and process the application-specific

functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process whereby,
based on the server-side view, the web container generates output, such as HTML or XHTML, that
can be read by the client, such as a browser.

64

Jakarta Faces Technology Benefits

One of the greatest advantages of Jakarta Faces technology is that it offers a clean separation
between behavior and presentation for web applications. A Jakarta Faces application can map
HTTP requests to component-specific event handling and manage components as stateful objects on
the server. Jakarta Faces technology allows you to build web applications that implement the finer-
grained separation of behavior and presentation that is traditionally offered by client-side UI
architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process and provides a simple
programming model to link the pieces. For example, page authors with no programming expertise
can use Jakarta Faces technology tags in a web page to link to server-side objects without writing
any scripts.

Another important goal of Jakarta Faces technology is to leverage familiar component and web-tier
concepts without limiting you to a particular scripting technology or markup language. Jakarta
Faces technology APIs are layered directly on top of the Servlet API, as shown in Figure 15, “Web
Application Technologies”.

Jakarta Faces Jakarta Server Pages
Standard Tag Library

Jakarta Server Pages

Jakarta Server Pages

Figure 15. Web Application Technologies

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Facelets technology, available as part of Jakarta Faces technology, is the preferred presentation
technology for building Jakarta Faces technology-based web applications. For more information on
Facelets technology features, see [web:faces-facelets::faces-facelets:::_introduction_to_facelets].

Facelets technology offers several advantages.
* Code can be reused and extended for components through the templating and composite

component features.

* You can use annotations to automatically register the managed bean as a resource available for
Jakarta Faces applications. In addition, implicit navigation rules allow developers to quickly
configure page navigation (see Navigation Model for details). These features reduce the manual
configuration process for applications.

* Most important, Jakarta Faces technology provides a rich architecture for managing component
state, processing component data, validating user input, and handling events.

65

A Simple Jakarta Faces Application

Jakarta Faces technology provides an easy and user-friendly process for creating web applications.
Developing a simple Jakarta Faces application typically requires the following tasks, which have
already been described in A Web Module That Uses Jakarta Faces Technology: The hellol Example:

* Creating web pages using component tags

* Developing managed beans

* Mapping the FacesServlet instance
The hellol example includes a managed bean and two Facelets web pages. When accessed by a

client, the first web page asks the user for his or her name, and the second page responds by
providing a greeting.

For details on Facelets technology, see [web:faces-facelets::faces-facelets:::_introduction_to_facelets].
For details on using EL expressions, see [web:faces-el::faces-el:::_expression_language]. For details
on the Jakarta Faces programming model and building web pages using Jakarta Faces technology,
see [web:faces-page::faces-page:::_using_jakarta_faces_technology_in_web_pages].

Every web application has a lifecycle. Common tasks, such as handling incoming requests, decoding
parameters, modifying and saving state, and rendering web pages to the browser, are all
performed during a web application lifecycle. Some web application frameworks hide the details of
the lifecycle from you, whereas others require you to manage them manually.

By default, Jakarta Faces automatically handles most of the lifecycle actions for you. However, it
also exposes the various stages of the request lifecycle so that you can modify or perform different
actions if your application requirements warrant it.

The lifecycle of a Jakarta Faces application starts and ends with the following activity: The client
makes a request for the web page, and the server responds with the page. The lifecycle consists of
two main phases: Execute and Render.

During the Execute phase, several actions can take place.

* The application view is built or restored.

* The request parameter values are applied.

» Conversions and validations are performed for component values.
* Managed beans are updated with component values.

» Application logic is invoked.

For a first (initial) request, only the view is built. For subsequent (postback) requests, some or all of
the other actions can take place.

In the Render phase, the requested view is rendered as a response to the client. Rendering is
typically the process of generating output, such as HTML or XHTML, that can be read by the client,
usually a browser.

The following short description of the example Jakarta Faces application passing through its

66

lifecycle summarizes the activity that takes place behind the scenes.

The hello1 example application goes through the following stages when it is deployed on GlassFish
Server.

1. When the hellol application is built and deployed on GlassFish Server, the application is in an
uninitiated state.

2. When a client makes an initial request for the index.xhtml web page, the hellol Facelets
application is compiled.

3. The compiled Facelets application is executed, and a new component tree is constructed for the
hello1 application and placed in a FacesContext.

4. The component tree is populated with the component and the managed bean property
associated with it, represented by the EL expression hello.name.

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.

The component tree is destroyed automatically.

S

On subsequent (postback) requests, the component tree is rebuilt, and the saved state is applied.

For full details on the lifecycle, see The Lifecycle of a Jakarta Faces Application.

User Interface Component Model

In addition to the lifecycle description, an overview of Jakarta Faces architecture provides better
understanding of the technology.

Jakarta Faces components are the building blocks of a Jakarta Faces view. A component can be a
user interface (UI) component or a non-Ul component.

Jakarta Faces UI components are configurable, reusable elements that compose the user interfaces
of Jakarta Faces applications. A component can be simple, such as a button, or can be compound,
such as a table composed of multiple components.

Jakarta Faces technology provides a rich, flexible component architecture that includes the
following:

A set of jakarta.faces.component.UIComponent classes for specifying the state and behavior of UI
components

* Arendering model that defines how to render the components in various ways
* A conversion model that defines how to register data converters onto a component

* An event and listener model that defines how to handle component events

A validation model that defines how to register validators onto a component

This section briefly describes each of these pieces of the component architecture.

67

User Interface Component Classes

Jakarta Faces technology provides a set of UI component classes and associated behavioral
interfaces that specify all the UI component functionality, such as holding component state,
maintaining a reference to objects, and driving event handling and rendering for a set of standard
components.

The component classes are completely extensible, allowing component writers to create their own
custom components. See [web:faces-custom::faces-
custom:::_creating_custom_ui_components_and_other_custom_objects] for more information.

The abstract base class for all components is jakarta.faces.component.UIComponent. Jakarta Faces Ul
component classes extend the UIComponentBase class (a subclass of UIComponent), which defines the
default state and behavior of a component. The following set of component classes is included with
Jakarta Faces technology.

* UIColumn: Represents a single column of data in a UIData component.

» UICommand: Represents a control that fires actions when activated.

» UIData: Represents a data binding to a collection of data represented by a
jakarta.faces.model.DataModel instance.

* UIForm: Represents an input form to be presented to the user. Its child components represent
(among other things) the input fields to be included when the form is submitted. This
component is analogous to the form tag in HTML.

* UIGraphic: Displays an image.

» UIInput: Takes data input from a user. This class is a subclass of UIOutput.
* UIMessage: Displays a localized error message.

 UIMessages: Displays a set of localized error messages.

» UIOutcomeTarget: Displays a link in the form of a link or a button.

» UIOutput: Displays data output on a page.

» UIPanel: Manages the layout of its child components.

» UIParameter: Represents substitution parameters.

» UISelectBoolean: Allows a user to set a boolean value on a control by selecting or deselecting it.
This class is a subclass of the UIInput class.

» UISelectItem: Represents a single item in a set of items.
» UISelectItems: Represents an entire set of items.

» UISelectMany: Allows a user to select multiple items from a group of items. This class is a
subclass of the UIInput class.

» UISelectOne: Allows a user to select one item from a group of items. This class is a subclass of the
UIInput class.

» UIViewParameter: Represents the query parameters in a request. This class is a subclass of the
UIInput class.

» UIViewRoot: Represents the root of the component tree.

68

In addition to extending UIComponentBase, the component classes also implement one or more
behavioral interfaces, each of which defines certain behavior for a set of components whose classes
implement the interface.

These behavioral interfaces, all defined in the jakarta.faces.component package unless otherwise
stated, are as follows.

* ActionSource: Indicates that the component can fire an action event. This interface is intended
for use with components based on JavaServer Faces technology 1.1_01 and earlier versions. This
interface is deprecated in JavaServer Faces 2.

* ActionSource2: Extends ActionSource and therefore provides the same functionality. However, it
allows components to use the Expression Language (EL) when they are referencing methods
that handle action events.

» EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

» NamingContainer: Mandates that each component rooted at this component have a unique ID.
» StateHolder: Denotes that a component has state that must be saved between requests.

* ValueHolder: Indicates that the component maintains a local value as well as the option of
accessing data in the model tier.

* jakarta.faces.event.SystemEventListenerHolder: Maintains a list of
jakarta.faces.event.SystemEventListener instances for each type of
jakarta.faces.event.SystemEvent defined by that class.

* jakarta.faces.component.behavior.ClientBehaviorHolder: Adds the ability to attach
jakarta.faces.component.behavior.ClientBehavior instances, such as a reusable script.

UICommand implements ActionSource? and StateHolder. UIOutput and component classes that extend
UIOutput implement StateHolder and ValueHolder. UIInput and component classes that extend
UIlnput implement EditableValueHolder, StateHolder, and ValueHolder. UIComponentBase implements
StateHolder.

Only component writers will need to use the component classes and behavioral interfaces directly.
Page authors and application developers will use a standard component by including a tag that
represents it on a page. Most of the components can be rendered in different ways on a page. For
example, a UICommand component can be rendered as a button or a link.

The next section explains how the rendering model works and how page authors can choose to
render the components by selecting the appropriate tags.

Component Rendering Model

The Jakarta Faces component architecture is designed such that the functionality of the components
is defined by the component classes, whereas the component rendering can be defined by a
separate renderer class. This design has several benefits, including the following.

* Component writers can define the behavior of a component once but create multiple renderers,
each of which defines a different way to render the component to the same client or to different
clients.

69

* Page authors and application developers can change the appearance of a component on the
page by selecting the tag that represents the appropriate combination of component and
renderer.

A render kit defines how component classes map to component tags that are appropriate for a
particular client. The Jakarta Faces implementation includes a standard HTML render kit for
rendering to an HTML client.

The render kit defines a set of jakarta.faces.render.Renderer classes for each component that it
supports. Each Renderer class defines a different way to render the particular component to the
output defined by the render kit. For example, a UISelectOne component has three different
renderers. One of them renders the component as a group of options. Another renders the
component as a combo box. The third one renders the component as a list box. Similarly, a
UICommand component can be rendered as a button or a link, using the h:commandButton or
h:commandLink tag. The command part of each tag corresponds to the UICommand class, specifying the
functionality, which is to fire an action. The Button or Link part of each tag corresponds to a
separate Renderer class that defines how the component appears on the page.

Each custom tag defined in the standard HTML render kit is composed of the component
functionality (defined in the UIComponent class) and the rendering attributes (defined by the Renderer
class).

The section Adding Components to a Page Using HTML Tag Library Tags lists all supported
component tags and illustrates how to use the tags in an example.

The Jakarta Faces implementation provides a custom tag library for rendering components in
HTML.

Conversion Model

A Jakarta Faces application can optionally associate a component with server-side object data. This
object is a JavaBeans component, such as a managed bean. An application gets and sets the object
data for a component by calling the appropriate object properties for that component.

When a component is bound to an object, the application has two views of the component’s data.

* The model view, in which data is represented as data types, such as int or long.

* The presentation view, in which data is represented in a manner that can be read or modified
by the user. For example, a java.util.Date might be represented as a text string in the format
mm/dd/yy or as a set of three text strings.

The Jakarta Faces implementation automatically converts component data between these two
views when the bean property associated with the component is of one of the types supported by
the component’s data. For example, if a UISelectBoolean component is associated with a bean
property of type java.lang.Boolean, the Jakarta Faces implementation will automatically convert
the component’s data from String to Boolean. In addition, some component data must be bound to
properties of a particular type. For example, a UISelectBoolean component must be bound to a
property of type boolean or java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a standard type, or

70

you might want to convert the format of the data. To facilitate this, Jakarta Faces technology allows
you to register a jakarta.faces.convert.Converter implementation on UIQutput components and
components whose classes subclass UIOutput. If you register the Converter implementation on a
component, the Converter implementation converts the component’s data between the two views.

You can either use the standard converters supplied with the Jakarta Faces implementation or
create your own custom converter. Custom converter creation is covered in [web:faces-
custom::faces-custom:::_creating_custom_ui_components_and_other_custom_objects].

Event and Listener Model

The Jakarta Faces event and listener model is similar to the JavaBeans event model in that it has
strongly typed event classes and listener interfaces that an application can use to handle events
generated by components.

The Jakarta Faces specification defines three types of events: application events, system events, and
data-model events.

Application events are tied to a particular application and are generated by a UIComponent. They
represent the standard events available in previous versions of Jakarta Faces technology.

An event object identifies the component that generated the event and stores information about the
event. To be notified of an event, an application must provide an implementation of the listener
class and must register it on the component that generates the event. When the user activates a
component, such as by clicking a button, an event is fired. This causes the Jakarta Faces
implementation to invoke the listener method that processes the event.

Jakarta Faces supports two kinds of application events: action events and value-change events.

An action event (class jakarta.faces.event.ActionEvent) occurs when the user activates a
component that implements ActionSource. These components include buttons and links.

A value-change event (class jakarta.faces.event.ValueChangeEvent) occurs when the user changes
the value of a component represented by UIInput or one of its subclasses. An example is selecting a
check box, an action that results in the component’s value changing to true. The component types
that can generate these types of events are the UIInput, UISelectOne, UISelectMany, and
UISelectBoolean components. Value-change events are fired only if no validation errors are
detected.

Depending on the value of the immediate property (see The immediate Attribute) of the component
emitting the event, action events can be processed during the Invoke Application phase or the
Apply Request Values phase, and value-change events can be processed during the Process
Validations phase or the Apply Request Values phase.

System events are generated by an Object rather than a UIComponent. They are generated during the
execution of an application at predefined times. They are applicable to the entire application rather
than to a specific component.

A data-model event occurs when a new row of a UIData component is selected.

There are two ways to cause your application to react to action events or value-change events that

71

are emitted by a standard component:

* Implement an event listener class to handle the event, and register the listener on the
component by nesting either an f:valueChangelListener tag or an f:actionListener tag inside the
component tag.

* Implement a method of a managed bean to handle the event, and refer to the method with a
method expression from the appropriate attribute of the component’s tag.

See Implementing an Event Listener for information on how to implement an event listener. See
Registering Listeners on Components for information on how to register the listener on a
component.

See Writing a Method to Handle an Action Event and Writing a Method to Handle a Value-Change
Event for information on how to implement managed bean methods that handle these events.

See Referencing a Managed Bean Method for information on how to refer to the managed bean
method from the component tag.

When emitting events from custom components, you must implement the appropriate event class
and manually queue the event on the component in addition to implementing an event listener
class or a managed bean method that handles the event. Handling Events for Custom Components
explains how to do this.

Validation Model

Jakarta Faces technology supports a mechanism for validating the local data of editable
components (such as text fields). This validation occurs before the corresponding model data is
updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for performing
common data validation checks. The Jakarta Faces core tag library also defines a set of tags that
correspond to the standard jakarta.faces.validator.Validator implementations. See Using the
Standard Validators for a list of all the standard validation classes and corresponding tags.

Most of the tags have a set of attributes for configuring the validator’s properties, such as the
minimum and maximum allowable values for the component’s data. The page author registers the
validator on a component by nesting the validator’s tag within the component’s tag.

In addition to validators that are registered on the component, you can declare a default validator
that is registered on all UIInput components in the application. For more information on default
validators, see Using Default Validators.

The validation model also allows you to create your own custom validator and corresponding tag to
perform custom validation. The validation model provides two ways to implement custom
validation.

* Implement a Validator interface that performs the validation.

* Implement a managed bean method that performs the validation.

If you are implementing a Validator interface, you must also do the following.

72

* Register the Validator implementation with the application.

* Create a custom tag or use an f:validator tag to register the validator on the component.

In the previously described standard validation model, the validator is defined for each input
component on a page. The Bean Validation model allows the validator to be applied to all fields in a
page. See [beanvalidation:bean-validation::bean-
validation:::_introduction_to_jakarta_bean_validation] and [beanvalidation:bean-validation-
advanced::bean-validation-advanced:::_bean_validation_advanced_topics] for more information on
Bean Validation.

Navigation Model

The Jakarta Faces navigation model makes it easy to define page navigation and to handle any
additional processing that is needed to choose the sequence in which pages are loaded.

In Jakarta Faces technology, navigation is a set of rules for choosing the next page or view to be
displayed after an application action, such as when a button or link is clicked.

Navigation can be implicit or user-defined. Implicit navigation comes into play when user-defined
navigation rules are not configured in the application configuration resource files.

When you add a component such as a commandButton to a Facelets page, and assign another page as
the value for its action property, the default navigation handler will try to match a suitable page
within the application implicitly. In the following example, the default navigation handler will try
to locate a page named response.xhtml within the application and navigate to it:

<h:commandButton value="submit" action="response">

User-defined navigation rules are declared in zero or more application configuration resource files,
such as faces-config.xml, by using a set of XML elements. The default structure of a navigation rule
is as follows:

<navigation-rule>
<description></description>
<from-view-id></from-view-id>
<navigation-case>
<from-action></from-action>
<from-outcome></from-outcome>
<if></if>
<to-view-id></to-view-id>
</navigation-case>
</navigation-rule>

User-defined navigation is handled as follows.

* Define the rules in the application configuration resource file.

» Refer to an outcome String from the button or link component’s action attribute. This outcome

73

String is used by the Jakarta Faces implementation to select the navigation rule.

Here is an example navigation rule:

<navigation-rule>
<from-view-id>/greeting.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This rule states that when a command component (such as an h:commandButton or an h:commandLink)
on greeting.xhtml is activated, the application will navigate from the greeting.xhtml page to the
response.xhtml page if the outcome referenced by the button component’s tag is success. Here is an
h:commandButton tag from greeting.xhtml that would specify a logical outcome of success:

<h:commandButton id="submit" value="Submit" action="success"/>

As the example demonstrates, each navigation-rule element defines how to get from one page
(specified in the from-view-id element) to the other pages of the application. The navigation-rule
elements can contain any number of navigation-case elements, each of which defines the page to
open next (defined by to-view-id) based on a logical outcome (defined by from-outcome).

In more complicated applications, the logical outcome can also come from the return value of an
action method in a managed bean. This method performs some processing to determine the
outcome. For example, the method can check whether the password the user entered on the page
matches the one on file. If it does, the method might return success; otherwise, it might return
failure. An outcome of failure might result in the logon page being reloaded. An outcome of
success might cause the page displaying the user’s credit card activity to open. If you want the
outcome to be returned by a method on a bean, you must refer to the method using a method
expression with the action attribute, as shown by this example:

<h:commandButton id="submit" value="Submit"
action="#{cashierBean.submit}" />

When the user clicks the button represented by this tag, the corresponding component generates an
action event. This event is handled by the default jakarta.faces.event.ActionlListener instance,
which calls the action method referenced by the component that triggered the event. The action
method returns a logical outcome to the action listener.

The listener passes the logical outcome and a reference to the action method that produced the
outcome to the default jakarta.faces.application.NavigationHandler. The NavigationHandler selects
the page to display next by matching the outcome or the action method reference against the
navigation rules in the application configuration resource file by the following process.

74

1. The NavigationHandler selects the navigation rule that matches the page currently displayed.

2. It matches the outcome or the action method reference that it received from the default
jakarta.faces.event.ActionlListener with those defined by the navigation cases.

3. It tries to match both the method reference and the outcome against the same navigation case.
4. If the previous step fails, the navigation handler attempts to match the outcome.

5. Finally, the navigation handler attempts to match the action method reference if the previous
two attempts failed.

6. If no navigation case is matched, it displays the same view again.

When the NavigationHandler achieves a match, the Render Response phase begins. During this
phase, the page selected by the NavigationHandler will be rendered.

The Duke’s Tutoring case study example application uses navigation rules in the business methods
that handle creating, editing, and deleting the users of the application. For example, the form for
creating a student has the following h:commandButton tag:

<h:commandButton id="submit"
action="#{adminBean.createStudent(studentManager.newStudent)}"
value="#{bundle['action.submit']}"/>

The action event calls the dukestutoring.ejb.AdminBean.createStudent method:

public String createStudent(Student student) {
em.persist(student);
return "createdStudent";

The return value of createdStudent has a corresponding navigation case in the faces-config.xml
configuration file:

<navigation-rule>
<from-view-id>/admin/student/createStudent.xhtml</from-view-id>
<navigation-case>
<from-outcome>createdStudent</from-outcome>
<to-view-id>/admin/index.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

After the student is created, the user is returned to the Administration index page.
For more information on how to define navigation rules, see Configuring Navigation Rules.

For more information on how to implement action methods to handle navigation, see Writing a
Method to Handle an Action Event.

75

For more information on how to reference outcomes or action methods from component tags, see
Referencing a Method That Performs Navigation.

The Lifecycle of a Jakarta Faces Application

The lifecycle of an application refers to the various stages of processing of that application, from its
initiation to its conclusion. All applications have lifecycles. During a web application lifecycle,
common tasks are performed, including the following.

* Handling incoming requests
* Decoding parameters
* Modifying and saving state

* Rendering web pages to the browser

The Jakarta Faces web application framework manages lifecycle phases automatically for simple
applications or allows you to manage them manually for more complex applications as required.

Jakarta Faces applications that use advanced features may require interaction with the lifecycle at
certain phases. For example, Ajax applications use partial processing features of the lifecycle (see
Partial Processing and Partial Rendering). A clearer understanding of the lifecycle phases is key to
creating well-designed components.

A simplified view of the Jakarta Faces lifecycle, consisting of the two main phases of a Jakarta Faces
web application, is introduced in A Simple Jakarta Faces Application. This section examines the
Jakarta Faces lifecycle in more detail.

Overview of the Jakarta Faces Lifecycle

The lifecycle of a Jakarta Faces application begins when the client makes an HTTP request for a
page and ends when the server responds with the page, translated to HTML.

The lifecycle can be divided into two main phases: Execute and Render. The Execute phase is
further divided into subphases to support the sophisticated component tree. This structure requires
that component data be converted and validated, component events be handled, and component
data be propagated to beans in an orderly fashion.

A Jakarta Faces page is represented by a tree of components, called a view. During the lifecycle, the
Jakarta Faces implementation must build the view while considering the state saved from a
previous submission of the page. When the client requests a page, the Jakarta Faces
implementation performs several tasks, such as validating the data input of components in the
view and converting input data to types specified on the server side.

The Jakarta Faces implementation performs all these tasks as a series of steps in the Jakarta Faces
request-response lifecycle. Figure 16, “Jakarta Faces Standard Request-Response Lifecycle”
illustrates these steps.

76

Faces Request

'

Restore view

'

Apply requests
Render Response] Process events — Response —
* complete
Process validations
Validation/ ¢
Conversion Errors/ — Process events — Response —#
Render Response ¢ complete

Update model values

'

— Conversion Errors/ — Process events — Response —
Render Response * complete

Invoke application

'

Process events — Response —
* complete
Render response -

'

Faces Response

Figure 16. Jakarta Faces Standard Request-Response Lifecycle

The request-response lifecycle handles two kinds of requests: initial requests and postbacks. An
initial request occurs when a user makes a request for a page for the first time. A postback request
occurs when a user submits the form contained on a page that was previously loaded into the
browser as a result of executing an initial request.

When the lifecycle handles an initial request, it executes only the Restore View and Render
Response phases, because there is no user input or action to process. Conversely, when the lifecycle
handles a postback, it executes all of the phases.

Usually, the first request for a Jakarta Faces page comes in from a client, as a result of clicking a link
or button component on a Jakarta Faces page. To render a response that is another Jakarta Faces
page, the application creates a new view and stores it in the jakarta.faces.context.FacesContext
instance, which represents all of the information associated with processing an incoming request
and creating a response. The application then acquires object references needed by the view and
calls the FacesContext.renderResponse method, which forces immediate rendering of the view by

77

skipping to the Render Response Phase of the lifecycle, as is shown by the arrows labelled Render
Response in Figure 16, “Jakarta Faces Standard Request-Response Lifecycle”.

Sometimes, an application might need to redirect to a different web application resource, such as a
web service, or generate a response that does not contain Jakarta Faces components. In these
situations, the developer must skip the Render Response phase by calling the
FacesContext.responseComplete method. This situation is also shown in , with the arrows labelled
Response Complete.

The most common situation is that a Jakarta Faces component submits a request for another
Jakarta Faces page. In this case, the Jakarta Faces implementation handles the request and
automatically goes through the phases in the lifecycle to perform any necessary conversions,
validations, and model updates and to generate the response.

There is one exception to the lifecycle described in this section. When a component’s immediate
attribute is set to true, the validation, conversion, and events associated with these components are
processed during the Apply Request Values Phase rather than in a later phase.

The details of the lifecycle explained in the following sections are primarily intended for developers
who need to know information such as when validations, conversions, and events are usually
handled and ways to change how and when they are handled. For more information on each of the
lifecycle phases, download the latest Jakarta Faces Specification documentation from
https://jakarta.ee/specifications/faces/.

The Jakarta Faces application lifecycle Execute phase contains the following subphases:

¢ Restore View Phase

* Apply Request Values Phase

Process Validations Phase

Update Model Values Phase

* Invoke Application Phase

Render Response Phase

Restore View Phase

When a request for a Jakarta Faces page is made, usually by an action, such as when a link or a
button component is clicked, the Jakarta Faces implementation begins the Restore View phase.

During this phase, the Jakarta Faces implementation builds the view of the page, wires event
handlers and validators to components in the view, and saves the view in the FacesContext instance,
which contains all the information needed to process a single request. All the application’s
components, event handlers, converters, and validators have access to the FacesContext instance.

If the request for the page is an initial request, the Jakarta Faces implementation creates an empty
view during this phase and the lifecycle advances to the Render Response phase, during which the
empty view is populated with the components referenced by the tags in the page.

If the request for the page is a postback, a view corresponding to this page already exists in the

78

https://jakarta.ee/specifications/faces/

FacesContext instance. During this phase, the Jakarta Faces implementation restores the view by
using the state information saved on the client or the server.

Apply Request Values Phase

After the component tree is restored during a postback request, each component in the tree
extracts its new value from the request parameters by using its decode (processDecodes()) method.
The value is then stored locally on each component.

If any decode methods or event listeners have called the renderResponse method on the current
FacesContext instance, the Jakarta Faces implementation skips to the Render Response phase.

If any events have been queued during this phase, the Jakarta Faces implementation broadcasts the
events to interested listeners.

If some components on the page have their immediate attributes (see The immediate Attribute) set to
true, then the validations, conversions, and events associated with these components will be
processed during this phase. If any conversion fails, an error message associated with the
component is generated and queued on FacesContext. This message will be displayed during the
Render Response phase, along with any validation errors resulting from the Process Validations
phase.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

At the end of this phase, the components are set to their new values, and messages and events have
been queued.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Process Validations Phase

During this phase, the Jakarta Faces implementation processes all validators registered on the
components in the tree by using its validate (processValidators) method. It examines the
component attributes that specify the rules for the validation and compares these rules to the local
value stored for the component. The Jakarta Faces implementation also completes conversions for
input components that do not have the immediate attribute set to true.

If the local value is invalid, or if any conversion fails, the Jakarta Faces implementation adds an
error message to the FacesContext instance, and the lifecycle advances directly to the Render
Response phase so that the page is rendered again with the error messages displayed. If there were
conversion errors from the Apply Request Values phase, the messages for these errors are also
displayed.

If any validate methods or event listeners have called the renderResponse method on the current
FacesContext, the Jakarta Faces implementation skips to the Render Response phase.

At this point, if the application needs to redirect to a different web application resource or generate

79

a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

If events have been queued during this phase, the Jakarta Faces implementation broadcasts them to
interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Update Model Values Phase

After the Jakarta Faces implementation determines that the data is valid, it traverses the
component tree and sets the corresponding server-side object properties to the components' local
values. The Jakarta Faces implementation updates only the bean properties pointed at by an input
component’s value attribute. If the local data cannot be converted to the types specified by the bean
properties, the lifecycle advances directly to the Render Response phase so that the page is re-
rendered with errors displayed. This is similar to what happens with validation errors.

If any updateModels methods or any listeners have called the renderResponse method on the current
FacesContext instance, the Jakarta Faces implementation skips to the Render Response phase.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

If any events have been queued during this phase, the Jakarta Faces implementation broadcasts
them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Invoke Application Phase

During this phase, the Jakarta Faces implementation handles any application-level events, such as
submitting a form or linking to another page.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

If the view being processed was reconstructed from state information from a previous request and
if a component has fired an event, these events are broadcast to interested listeners.

Finally, the Jakarta Faces implementation transfers control to the Render Response phase.

Render Response Phase

During this phase, Jakarta Faces builds the view and delegates authority to the appropriate
resource for rendering the pages.

If this is an initial request, the components that are represented on the page will be added to the

80

component tree. If this is not an initial request, the components are already added to the tree and
need not be added again.

If the request is a postback and errors were encountered during the Apply Request Values phase,
Process Validations phase, or Update Model Values phase, the original page is rendered again
during this phase. If the pages contain h:message or h:messages tags, any queued error messages are
displayed on the page.

After the content of the view is rendered, the state of the response is saved so that subsequent
requests can access it. The saved state is available to the Restore View phase.

Partial Processing and Partial Rendering

The Jakarta Faces lifecycle spans all of the execute and render processes of an application. It is also
possible to process and render only parts of an application, such as a single component. For
example, the Jakarta Faces Ajax framework can generate requests containing information on which
particular component may be processed and which particular component may be rendered back to
the client.

Once such a partial request enters the Jakarta Faces lifecycle, the information is identified and
processed by a jakarta.faces.context.PartialViewContext object. The Jakarta Faces lifecycle is still
aware of such Ajax requests and modifies the component tree accordingly.

The execute and render attributes of the f:ajax tag are used to identify which components may be
executed and rendered. For more information on these attributes, see [web:faces-ajax::faces-
ajax:::_using_ajax_with_jakarta_faces_technology].

Further Information about Jakarta Faces Technology
For more information on Jakarta Faces technology, see

* Jakarta Faces 3.0 specification:
https://jakarta.ee/specifications/faces/3.0/

* Mojarra website:
https://eclipse-ee4j.github.io/mojarra/

For additional samples, see the GlassFish samples at https://github.com/eclipse-ee4j/glassfish-
samples/tree/master/ws/jakartaee9.

Introduction to Facelets

The term Facelets refers to the view declaration language for Jakarta Faces technology. Facelets is a
part of the Jakarta Faces specification and also the preferred presentation technology for building
Jakarta Faces technology-based applications. Jakarta Server Pages technology, previously used as
the presentation technology for Jakarta Faces, does not support all the new features available in
Jakarta Faces in the Jakarta EE platform. Jakarta Server Pages technology is considered to be a
deprecated presentation technology for Jakarta Faces.

81

https://jakarta.ee/specifications/faces/3.0/
https://eclipse-ee4j.github.io/mojarra/
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9

What Is Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build Jakarta Faces
views using HTML style templates and to build component trees. Facelets features include the
following:

Use of XHTML for creating web pages
» Support for Facelets tag libraries in addition to Jakarta Faces and JSTL tag libraries

» Support for the Expression Language (EL)

Templating for components and pages
The advantages of Facelets for large-scale development projects include the following:

» Support for code reuse through templating and composite components

* Functional extensibility of components and other server-side objects through customization
» Faster compilation time

* Compile-time EL validation

» High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on development and
deployment.

Facelets views are usually created as XHTML pages. Jakarta Faces implementations support XHTML
pages created in conformance with the XHTML Transitional Document Type Definition (DTD), as
listed at https://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional. By convention, web pages
built with XHTML have an .xhtml extension.

Jakarta Faces technology supports various tag libraries to add components to a web page. To
support the Jakarta Faces tag library mechanism, Facelets uses XML namespace declarations. Tag
Libraries Supported by Facelets lists the tag libraries supported by Facelets.

Tag Libraries Supported by Facelets

Tag Library URI Prefix = Example Contents
Jakarta Faces Facelets http://xmlns.jcp.org/jsf/fa Ui: ui:component Tags for templating
Tag Library celets
ui:insert
Jakarta Faces HTML Tag http://xmlns.jcp.org/jsf/h h: h:head Jakarta Faces
Library tml component tags for
h:body all UIComponent
objects

h:outputText

h:inputText

82

https://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

Tag Library URI Prefix = Example Contents

—h

Jakarta Faces Core Tag http://xmlns.jcp.org/jsf/c fiactionliste Tags for Jakarta
Library ore ner Faces custom
actions that are
independent of any
particular render

f:attribute

kit
Pass-through Elements http://xmlns.jcp.org/jsf ~ Jsf: jsfiid Tags to support
Tag Library HTML5-friendly
markup
Pass-through Attributes http:/xmlns.jcp.org/jsf/p P: p:type Tags to support
Tag Library assthrough HTML5-friendly
markup
Composite Component http://xmlns.jcp.org/jsf/c ccC: cc:interface Tags to support
Tag Library omposite composite
components
JSTL Core Tag Library http://xmlns.jcp.org/jsp/j C: c:forEach JSTL 1.2 Core Tags
stl/core
c:catch
JSTL Functions Tag http://xmlns.jcp.org/jsp/j fn: fn:toUpperCas JSTL 1.2 Functions
Library stl/functions € Tags

fn:toLowerCas
e

Facelets provides two namespaces to support HTML5-friendly markup. For details, see HTML5-
Friendly Markup.

Facelets supports tags for composite components, for which you can declare custom prefixes. For
more information on composite components, see Composite Components.

The namespace prefixes shown in the table are conventional, not mandatory. As is always the case
when you declare an XML namespace, you can specify any prefix in your Facelets page. For
example, you can declare the prefix for the composite component tag library as

xmlns:composite="http://xmlns.jcp.org/jsf/composite”

instead of as

xmlns:cc="http://xmlns.jcp.org/jsf/composite"”

Based on the Jakarta Faces support for Expression Language (EL) syntax, Facelets uses EL
expressions to reference properties and methods of managed beans. EL expressions can be used to
bind component objects or values to methods or properties of managed beans that are used as
backing beans. For more information on using EL expressions, see Using the EL to Reference

83

Managed Beans.

The Lifecycle of a Facelets Application

The Jakarta Faces specification defines the lifecycle of a Jakarta Faces application. For more
information on this lifecycle, see The Lifecycle of a Jakarta Faces Application. The following steps
describe that process as applied to a Facelets-based application.

1. When a client, such as a browser, makes a new request to a page that is created using Facelets, a
new component tree or jakarta.faces.component.UIViewRoot is created and placed in the
FacesContext.

2. The UIViewRoot is applied to the Facelets, and the view is populated with components for
rendering.

3. The newly built view is rendered back as a response to the client.

4. On rendering, the state of this view is stored for the next request. The state of input components
and form data is stored.

5. The client may interact with the view and request another view or change from the Jakarta
Faces application. At this time, the saved view is restored from the stored state.

6. The restored view is once again passed through the Jakarta Faces lifecycle, which eventually
will either generate a new view or re-render the current view if there were no validation
problems and no action was triggered.

7. If the same view is requested, the stored view is rendered once again.
8. If a new view is requested, then the process described in Step 2 is continued.

9. The new view is then rendered back as a response to the client.

Developing a Simple Facelets Application: The guessnumber-jsf Example
Application

This section describes the general steps involved in developing a Jakarta Faces application. The
following tasks are usually required:

* Developing the managed beans

Creating the pages using the component tags

Defining page navigation
* Mapping the FacesServlet instance

* Adding managed bean declarations

Creating a Facelets Application

The example used in this tutorial is the guessnumber-jsf application. The application presents you
with a page that asks you to guess a number from 0 to 10, validates your input against a random
number, and responds with another page that informs you whether you guessed the number
correctly or incorrectly.

84

The source code for this application is in the jakartaee-examples/tutorial/web/faces/quessnumber-
faces/ directory.

Developing a Managed Bean

In a typical Jakarta Faces application, each page of the application connects to a managed bean that
serves as a backing bean. The backing bean defines the methods and properties that are associated
with the components. In this example, both pages use the same backing bean.

The following managed bean class, UserNumberBean.java, generates a random number from 0 to 10
inclusive:

package ee.jakarta.tutorial.quessnumber;

import java.io.Serializable;

import java.util.Random;

import jakarta.enterprise.context.SessionScoped;
import jakarta.inject.Named;

@Named
@SessionScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 5443351151396868724L;
Integer randomInt = null;

Integer userNumber = null;

String response = null;

private int maximum = 10;

private int minimum = @;

public UserNumberBean() {
Random randomGR = new Random();
randomInt = new Integer(randomGR.nextInt(maximum + 1));
// Print number to server log
System.out.println("Duke's number:

+ randomInt);

}

public void setUserNumber(Integer user_number) {
userNumber = user_number;

}

public Integer getUserNumber() {
return userNumber;

}

public String getResponse() {
if ((userNumber == null) || (userNumber.compareTo(randomInt) != 0)) {
return "Sorry, " + userNumber + " is incorrect.";
} else {
return "Yay! You got it!";

85

}

public int getMaximum() {
return (this.maximum);

}

public void setMaximum(int maximum) {
this.maximum = maximum;

}

public int getMinimum() {
return (this.minimum);

}

public void setMinimum(int minimum) {
this.minimum = minimum;

}

Note the use of the @Named annotation, which makes the managed bean accessible through the EL.
The @SessionScoped annotation registers the bean scope as session to enable you to make multiple
guesses as you run the application.

Creating Facelets Views

To create a page or view, you add components to the pages, wire the components to backing bean
values and properties, and register converters, validators, or listeners on the components.

For the example application, XHTML web pages serve as the front end. The first page of the
example application is a page called greeting.xhtml. A closer look at various sections of this web
page provides more information.

The first section of the web page declares the content type for the page, which is XHTML.:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.@ Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

The next section specifies the language of the XHTML page and then declares the XML namespace
for the tag libraries that are used in the web page:

<html lang="en"
xmlns="http://www.w3.0rqg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core">

The next section uses various tags to insert components into the web page:

86

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>

</h:head>
<h:body>
<h:form>

<h:graphicImage value="#{resource['images:wave.med.qgif"']}"
alt="Duke waving his hand"/>
<h2>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you quess it?
</h2>
<p><h:inputText id="userNo"
title="Enter a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>
</p>
<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errors1"
for="userNo"/>
</h:form>
</h:body>

Note the use of the following tags:

* Facelets HTML tags (those beginning with h:) to add components

* The Facelets core tag f:validateLongRange to validate the user input

An h:inputText tag accepts user input and sets the value of the managed bean property userNumber
through the EL expression #{userNumberBean.userNumber}. The input value is validated for value
range by the Jakarta Faces standard validator tag f:validateLongRange.

The image file, wave.med.gif, is added to the page as a resource, as is the style sheet. For more
details about the resources facility, see Web Resources.

An h:commandButton tag with the ID submit starts validation of the input data when a user clicks the
button. Using implicit navigation, the tag redirects the client to another page, response.xhtml, which
shows the response to your input. The page specifies only response, which by default causes the
server to look for response.xhtml.

87

You can now create the second page, response.xhtml, with the following content:

<IDOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>Guess Number Facelets Application</title>
</h:head>
<h:body>
<h:form>
<h:graphicImage value="#{resource['images:wave.med.gif"']}"
alt="Duke waving his hand"/>

<h2>
<h:outputText id="result" value="#{userNumberBean.response}"/>
</h2>
<h:commandButton id="back" value="Back" action="greeting"/>
</h:form>
</h:body>

</html>

This page also uses implicit navigation, setting the action attribute for the Back button to send the
user to the greeting.xhtml page.

Configuring the Application

Configuring a Jakarta Faces application involves mapping the Faces Servlet in the web deployment
descriptor file, such as a web.xml file, and possibly adding managed bean declarations, navigation
rules, and resource bundle declarations to the application configuration resource file, faces-
config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically created for you. In
such an IDE-created web.xml file, change the default greeting page, which is index.xhtml, to
greeting.xhtml. Here is an example web. xml file, showing this change in bold.

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="5.0"
xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rqg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/web-app_5_0.xsd">
<context-param>
<param-name>jakarta.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>

88

<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-Tlist>
<welcome-file>greeting.xhtml</welcome-file>
</welcome-file-list>

</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the status of a
Jakarta Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user. If
not defined by the user, the default project stage is Production.

Running the guessnumber-jsf Facelets Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the guessnumber-jsf

example.

To Build, Package, and Deploy the guessnumber-jsf Example Using NetBeans IDE

1
2

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

Select the guessnumber-jsf folder.
Click Open Project.

In the Projects tab, right-click the quessnumber-jsf project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the guessnumber-jsf Example Using Maven

1.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

89

2. In a terminal window, go to:
jakartaee-examples/tutorial/web/faces/guessnumber-faces/
3. Enter the following command:
mvn install

This command builds and packages the application into a WAR file, guessnumber-jsf.war, that is
located in the target directory. It then deploys it to the server.

To Run the guessnumber-jsf Example

1. Open a web browser.

2. Enter the following URL in your web browser:
http://localhost:8080/quessnumber-jsf

3. In the field, enter a number from 0 to 10 and click Submit.
Another page appears, reporting whether your guess is correct or incorrect.
4. If you guessed incorrectly, click Back to return to the main page.

You can continue to guess until you get the correct answer, or you can look in the server log,
where the UserNumberBean constructor displays the correct answer.

Using Facelets Templates

Jakarta Faces technology provides the tools to implement user interfaces that are easy to extend
and reuse. Templating is a useful Facelets feature that allows you to create a page that will act as
the base, or template, for the other pages in an application. By using templates, you can reuse code
and avoid recreating similarly constructed pages. Templating also helps in maintaining a standard
look and feel in an application with a large number of pages.

Facelets Templating Tags lists Facelets tags that are used for templating and their respective
functionality.

Facelets Templating Tags

Tag Function
ui:component Defines a component that is created and added to the component tree.
ui:composition Defines a page composition that optionally uses a template. Content outside of

this tag is ignored.

ui:debug Defines a debug component that is created and added to the component tree.

90

Tag

ui
ui
ui
ui
ui
ui
ui

ui

:decorate
:define
: fragment
:include
zinsert
:param
‘repeat

.remove

Function

Similar to the composition tag but does not disregard content outside this tag.
Defines content that is inserted into a page by a template.

Similar to the component tag but does not disregard content outside this tag.
Encapsulates and reuses content for multiple pages.

Inserts content into a template.

Used to pass parameters to an included file.

Used as an alternative for loop tags, such as c:forEach or h:dataTable.

Removes content from a page.

For more information on Facelets templating tags, see the Jakarta Faces Facelets Tag Library

documentation.

The Facelets tag library includes the main templating tag ui:insert. A template page that is created
with this tag allows you to define a default structure for a page. A template page is used as a
template for other pages, usually referred to as client pages.

Here is an example of a template saved as template.xhtml:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>

<meta http-equiv="Content-Type"

content="text/html; charset=UTF-8" />

<h:outputStylesheet library="css" name="default.css"/>
<h:outputStylesheet library="css" name="csslLayout.css"/>
<title>Facelets Template</title>

</h:head>

<h:body>

<div id="top" class="top">

<ui:insert name="top">Top Section</ui:insert>
</div>
<div>
<div id="left">

<ui:insert name="left">Left Section</ui:insert>
</div>
<div id="content" class="left _content">

<ui:insert name="content">Main Content</ui:insert>
</div>
</div>

</h:body>

91

</html>

The example page defines an XHTML page that is divided into three sections: a top section, a left
section, and a main section. The sections have style sheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using the ui:composition tag. In the following example, a
client page named templateclient.xhtml invokes the template page named template.xhtml from the
preceding example. A client page allows content to be inserted with the help of the ui:define tag.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:ui="http://xmlns.jcp.org/jsf/facelets"
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:body>
<ui:composition template="./template.xhtml">
<ui:define name="top">
Welcome to Template Client Page
</ui:define>

<ui:define name="left">
<h:outputlLabel value="You are in the Left Section"/>
</ui:define>

<ui:define name="content">
<h:graphicImage value="#{resource['images:wave.med.qgif"']}"/>
<h:outputText value="You are in the Main Content Section"/>
</ui:define>
</ui:composition>
</h:body>
</html>

You can use NetBeans IDE to create Facelets template and client pages. For more information on
creating these pages, see https://netbeans.org/kb/docs/web/jsf20-intro.html.

Composite Components

Jakarta Faces technology offers the concept of composite components with Facelets. A composite
component is a special type of template that acts as a component.

Any component is essentially a piece of reusable code that behaves in a particular way. For
example, an input component accepts user input. A component can also have validators,
converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing components. This
reusable, user-created component has a customized, defined functionality and can have validators,
converters, and listeners attached to it like any other component.

92

https://netbeans.org/kb/docs/web/jsf20-intro.html

With Facelets, any XHTML page that contains markup tags and other components can be converted
into a composite component. Using the resources facility, the composite component can be stored in
a library that is available to the application from the defined resources location.

Composite Component Tags lists the most commonly used composite tags and their functions.

Composite Component Tags

Tag

composite:interfa
ce

composite:impleme
ntation

composite:attribu
te

composite:insert(
hildren

composite:valueHo
lder

composite:editabl
eValueHolder

composite:actionS
ource

Function

Declares the usage contract for a composite component. The composite
component can be used as a single component whose feature set is the union
of the features declared in the usage contract.

Defines the implementation of the composite component. If a
composite:interface element appears, there must be a corresponding
composite:implementation.

Declares an attribute that may be given to an instance of the composite
component in which this tag is declared.

Any child components or template text within the composite component tag
in the using page will be reparented into the composite component at the
point indicated by this tag’s placement within the composite:implementation
section.

Declares that the composite component whose contract is declared by the
composite:interface in which this element is nested exposes an
implementation of ValueHolder suitable for use as the target of attached
objects in the using page.

Declares that the composite component whose contract is declared by the
composite:interface in which this element is nested exposes an
implementation of EditableValueHolder suitable for use as the target of
attached objects in the using page.

Declares that the composite component whose contract is declared by the
composite:interface in which this element is nested exposes an
implementation of ActionSource? suitable for use as the target of attached
objects in the using page.

For more information and a complete list of Facelets composite tags, see the Jakarta Faces Facelets
Tag Library documentation.

The following example shows a composite component that accepts an email address as input:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:composite="http://xmlns.jcp.org/jsf/composite"”
xmlns:h="http://xmlns.jcp.org/jsf/html">

<h:head>

93

<title>This content will not be displayed</title>
</h:head>
<h:body>
<composite:interface>
<composite:attribute name="value" required="false"/>
</composite:interface>

<composite:implementation>
<h:outputlLabel value="Email id: "></h:outputlLabel>
<h:inputText value="#{cc.attrs.value}"></h:inputText>
</composite:implementation>
</h:body>
</html>

Note the use of cc.attrs.value when defining the value of the inputText component. The word cc in
Jakarta Faces is a reserved word for composite components. The #{cc.attrs.attribute-name}
expression is used to access the attributes defined for the composite component’s interface, which
in this case happens to be value.

The preceding example content is stored as a file named email.xhtml in a folder named
resources/emcomp, under the application web root directory. This directory is considered a library by
Jakarta Faces, and a component can be accessed from such a library. For more information on
resources, see Web Resources.

The web page that uses this composite component is generally called a using page. The using page
includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtm11/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:em="http://xmlns.jcp.org/jsf/composite/emcomp">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<body>
<h:form>
<em:email value="Enter your email id" />
</h:form>
</body>
</html>

The local composite component library is defined in the xmlns namespace with the declaration
xmlns:em="http://xmlns.jcp.org/jsf/composite/emcomp”. The component itself is accessed through
the em:email tag. The preceding example content can be stored as a web page named
emuserpage.xhtml under the web root directory. When compiled and deployed on a server, it can be
accessed with the following URL:

94

http://localhost:8080/application-name/emuserpage.xhtml

See [web:faces-advanced-cc::faces-advanced-
cc:::_composite_components_advanced_topics_and_an_example] for more information and an
example.

Web Resources

Web resources are any software artifacts that the web application requires for proper rendering,
including images, script files, and any user-created component libraries. Resources must be
collected in a standard location, which can be one of the following.

* A resource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/resource-identifier.

* A resource packaged in the web application’s classpath must be in a subdirectory of the META-
INF/resources directory within a web application: META-INF/resources/resource-identifier. You
can use this file structure to package resources in a JAR file bundled in the web application.

The Jakarta Faces runtime will look for the resources in the preceding listed locations, in that order.

Resource identifiers are unique strings that conform to the following format (all on one line):

[locale-prefix/][library-name/][library-version/]resource-name[/resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a resource-
name, which is usually a file name, is a required element. For example, the most common way to
specify a style sheet, image, or script is to use the library and name attributes, as in the following tag
from the guessnumber-jsf example:s

<h:outputStylesheet library="css" name="default.css"/>

This tag specifies that the default.css style sheet is in the directory web/resources/css.

You can also specify the location of an image using the following syntax, also from the guessnumber-
jsf example:

<h:graphicImage value="#{resource['images:wave.med.gif']}"/>

This tag specifies that the image named wave.med.gif is in the directory web/resources/images.

Resources can be considered as a library location. Any artifact, such as a composite component or a
template that is stored in the resources directory, becomes accessible to the other application
components, which can use it to create a resource instance.

95

Relocatable Resources

You can place a resource tag in one part of a page and specify that it be rendered in another part of
the page. To do this, you use the target attribute of a tag that specifies a resource. Acceptable values
for this attribute are as follows.

e “head” renders the resource in the head element.
* “body” renders the resource in the body element.
e “form” renders the resource in the form element.

For example, the following h:outputScript tag is placed within an h:form element, but it renders the
JavaScript in the head element:

<h:form>
<h:outputScript name="myscript.js" library="mylibrary" target="head"/>
</h:form>

The h:outputStylesheet tag also supports resource relocation, in a similar way.

Relocatable resources are essential for composite components that use stylesheets and can also be
useful for composite components that use JavaScript. See The compositecomponentexample
Example Application for an example.

Resource Library Contracts

Resource library contracts allow you to define a different look and feel for different parts of one or
more applications, instead of either having to use the same look and feel for all or having to specify
a different look on a page-by-page basis.

To do this, you create a contracts section of your web application. Within the contracts section, you
can specify any number of named areas, each of which is called a contract. Within each contract
you can specify resources such as template files, stylesheets, JavaScript files, and images.

For example, you could specify two contracts named c1 and c2, each of which uses a template and
other files:

src/main/webapp
WEB-INF/
contracts
cl
template.xhtml
style.css
myImg.qif
myJS.js
c2
template.xhtml
style2.css
img2.qif

96

1S2.js
index.xhtml

One part of the application can use c1, while another can use c2.

Another way to use contracts is to specify a single contract that contains multiple templates:

src/main/webapp
contracts
myContract
templatel.xhtml
template2.xhtml
style.css
img.png
img2.png

You can package a resource library contract in a JAR file for reuse in different applications. If you
do so, the contracts must be located under META-INF/contracts. You can then place the JAR file in the
WEB-INF/1ib directory of an application. This means that the application would be organized as
follows:

src/main/webapp/
WEB-INF/1ib/myContract.jar

You can specify the contract usage within an application’s faces-config.xml file, under the resource-
library-contracts element. You need to use this element only if your application uses more than
one contract, however.

The hellol-rlc Example Application

The hello1-rlc example modifies the simple hellol example from A Web Module That Uses Jakarta
Faces Technology: The hellol Example to use two resource library contracts. Each of the two pages
in the application uses a different contract.

The managed bean for hellol-rlc, Hello.java, is identical to the one for hellol (except that it
replaces the @Named and @RequestScoped annotations with @Model).

The source code for this application is in the jakartaee-examples/tutorial/web/faces/hello1-rlc/
directory.

Configuring the hellol-rlc Example

The faces-config.xml file for the hello1-rlc example contains the following elements:

<resource-library-contracts>

97

<contract-mapping>
<url-pattern>/reply/*</url-pattern>
<contracts>reply</contracts>

</contract-mapping>

<contract-mapping>
<url-pattern>*</url-pattern>
<contracts>hello</contracts>

</contract-mapping>

</resource-library-contracts>

The contract-mapping elements within the resource-library-contracts element map each contract to
a different set of pages within the application. One contract, named reply, is used for all pages
under the reply area of the application (/reply/*). The other contract, hello, is used for all other
pages in the application (*).

The application is organized as follows:

hellol-rlc
pom.xml
src/main/java/jakarta/tutorial/hellolrlc/Hello.java
src/main/webapp
WEB-INF
faces-config.xml
web . xml
contracts
hello

default.css
duke.handsOnHips.gif
template.xhtml
reply
default.css
duke.thumbsup.gif
template.xhtml
reply
response.xhtml
greeting.xhtml

The web.xml file specifies the welcome-file as greeting.xhtml. Because it is not located under
src/main/webapp/reply, this Facelets page uses the hello contract, whereas
src/main/webapp/reply/response.xhtml uses the reply contract.

The Facelets Pages for the hellol-rlc Example

The greeting.xhtml and response.xhtml pages have identical code calling in their templates:

<ui:composition template="/template.xhtml">

The template.xhtml files in the hello and reply contracts differ only in two respects: the placeholder

98

text for the title element ("Hello Template" and "Reply Template") and the graphic that each
specifies.

The default.css stylesheets in the two contracts differ in only one respect: the background color
specified for the body element.

To Build, Package, and Deploy the hellol-rlc Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4. Select the hellol-rlc folder.
5. Click Open Project.

6. In the Projects tab, right-click the hellol1-rlc project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the hellol-rlc Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/hellol-rlc/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, hello1-rlc.war, that is
located in the target directory. It then deploys it to your GlassFish Server instance.

To Run the hellol-rlc Example

1. Enter the following URL in your web browser:
http://localhost:8080/hellol-rlc
2. The greeting.xhtml page looks just like the one from hellol except for its background color and

graphic.

3. In the text field, enter your name and click Submit.

99

4. The response page also looks just like the one from hellol except for its background color and
graphic.

The page displays the name you submitted. Click Back to return to the greeting.xhtml page.

HTML5-Friendly Markup

When you want to produce user interface features for which HTML does not have its own elements,
you can create a custom Jakarta Faces component and insert it in your Facelets page. This
mechanism can cause a simple element to create complex web code. However, creating such a
component is a significant task (see [web:faces-custom::faces-
custom:::_creating_custom_ui_components_and_other_custom_objects]).

HTMLS5 offers new elements and attributes that can make it unnecessary to write your own
components. It also provides many new capabilities for existing components. Jakarta Faces
technology supports HTMLS5 not by introducing new Ul components that imitate HTML5 ones but
by allowing you to use HTML5 markup directly. It also allows you to use Jakarta Faces attributes
within HTML5 elements. Jakarta Faces technology support for HTMLS5 falls into two categories:

* Pass-through elements

» Pass-through attributes
The effect of the HTML5-friendly markup feature is to offer the Facelets page author almost
complete control over the rendered page output, rather than having to pass this control off to

component authors. You can mix and match Jakarta Faces and HTML5 components and elements as
you see fit.

Using Pass-Through Elements

Pass-through elements allow you to use HTMLS5 tags and attributes but to treat them as equivalent
to Jakarta Faces components associated with a server-side UIComponent instance.

To make an element that is not a Jakarta Faces element a pass-through element, specify at least one
of its attributes using the http://xmlns.jcp.org/jsf namespace. For example, the following code
declares the namespace with the short name jsf:

<html ... xmlns:jsf="http://xmlns.jcp.org/jsf"

<input type="email" jsf:id="email" name="email"
value="#{reservationBean.email}" required="required"/>

Here, the jsf prefix is placed on the id attribute so that the HTML5 input tag’s attributes are treated
as part of the Facelets page. This means that, for example, you can use EL expressions to retrieve
managed bean properties.

How Facelets Renders HTML5 Elements shows how pass-through elements are rendered as Facelets
tags. The faces implementation uses the element name and the identifying attribute to determine
the corresponding Facelets tag that will be used in the server-side processing. The browser,

100

however, interprets the markup that the page author has written.

How Facelets Renders HTML5 Elements

HTMLS5 Element
Name

a

a

a

a

body
button
button
form
head
img
input
input

input
input
input
input

input
input
input
input
input
input
input
input
input
input
input
input
input
input
label
link

script

Identifying
Attribute
jsf:action
jsf:actionListener
jsf:value

jsf:outcome

jsf:outcome

type="button"
type="checkbox"

type="color"
type="date"
type="datetime"

type="datetime-
local"

type="email"
type="month"
type="number"
type="range"
type="search"
type="time"
type="url"
type="week"
type="file"
type="hidden"
type="password"
type="reset"
type="submit"
type="*"

Facelets Tag

:commandLink
:commandLink
routputLink
:Link

:body
:commandButton
:button

:form

:head
:graphicImage

o O O o O O o o —oDT =D =—D =

:commandButton

h:selectBooleanChe
ckbox

h:inputText
rinputText
rinputText

o o =

rinputText

rinputText
rinputText
sinputText
sinputText
sinputText
sinputText
sinputText
sinputText
:inputFile
:inputHidden
rinputSecret
:commandButton
:commandButton
rinputText
routputlabel
routputStylesheet

O O o O o o o o - - O o -o - =D S zZ=—oDT =D =

routputSeript

HTMLS Element Identifying Facelets Tag

Name Attribute

select multiple="*" h:selectManyListbo
X

select h:selectOnelListbox

textarea h:inputTextArea

Using Pass-Through Attributes

Pass-through attributes are the converse of pass-through elements. They allow you to pass
attributes that are not Jakarta Faces attributes through to the browser without interpretation. If you
specify a pass-through attribute in a Jakarta Faces UIComponent, the attribute name and value are
passed straight through to the browser without being interpreted by Jakarta Faces components or
renderers. There are several ways to specify pass-through attributes.

* Use the Jakarta Faces namespace for pass-through attributes to prefix the attribute names
within a Jakarta Faces component. For example, the following code declares the namespace
with the short name p, then passes the type, min, max, required, and title attributes through to
the HTMLS5 input component:

<html ... xmlns:p="http://xmlns.jcp.org/jsf/passthrough”

<h:form prependId="false">

<h:inputText id="nights" p:type="number" value="#{bean.nights}"
p:min="1" p:max="30" p:required="required"
p:title="Enter a number between 1 and 30 inclusive.">

This will cause the following markup to be rendered (assuming that bean.nights has a default
value set to 1):

<input id="nights" type="number" value="1" min="1" max="30"
required="required"
title="Enter a number between 1 and 30 inclusive.">

» To pass a single attribute, nest the f:passThroughAttribute tag within a component tag. For
example:

<h:inputText value="#{user.email}">
<f:passThroughAttribute name="type" value="email" />
</h:inputText>

This code would be rendered similarly to the following:

102

<input value="me@me.com" type="email" />

* To pass a group of attributes, nest the f:passThroughAttributes tag within a component tag,
specifying an EL value that must evaluate to a Map<String, Object>. For example:

<h:inputText value="#{bean.nights}">
<f:passThroughAttributes value="#{bean.nameValuePairs}" />
</h:inputText>

If the bean used the following Map declaration and initialized the map in the constructor as
follows, the markup would be similar to the output of the code that uses the pass-through
attribute namespace:

private Map<String, Object> nameValuePairs;

public Bean() {
this.nameValuePairs = new HashMap<>();
this.nameValuePairs.put("type", "number");
this.nameValuePairs.put("min", "1");
this.nameValuePairs.put("max", "30");
this.nameValuePairs.put("required", "required");
this.nameValuePairs.put("title",

"Enter a number between 1 and 4 inclusive.");

The reservation Example Application

The reservation example application provides a set of HTML5 input elements of various types to
simulate purchasing tickets for a theatrical event. It consists of two Facelets pages,
reservation.xhtml and confirmation.xhtml, and a backing bean, ReservationBean.java. The pages use
both pass-through attributes and pass-through elements.

The source code for this application is in the jakartaee-examples/tutorial/web/faces/reservation/
directory.

The Facelets Pages for the reservation Application

The first important feature of the Facelets pages for the reservation application is the DOCTYPE
header. Most Facelets pages in Jakarta Faces applications refer to the XHTML DTD. The facelets
pages for this application begin simply with the following DOCTYPE header, which indicates an
HTMLS5 page:

<!DOCTYPE html>

The namespace declarations in the html element of the reservation.xhtml page specify both the jsf
and the passthrough namespaces:

103

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:f="http://xmlns.jcp.org/jsf/core"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:p="http://xmlns.jcp.org/jsf/passthrough"
xmlns:jsf="http://xmlns.jcp.org/jsf">

Next, an empty h:head tag followed by an h:outputStylesheet tag within the h:body tag illustrates the
use of a relocatable resource (as described in Relocatable Resources):

<h:head>
</h:head>
<h:body>
<h:outputStylesheet name="css/stylesheet.css" target="head"/>

The reservation.xhtml page uses pass-through elements for most of the form fields on the page. This
allows it to use some HTML5-specific input element types, such as date and email. For example, the
following element renders both a date format and a calendar from which you can choose a date.
The jsf prefix on the id attribute makes the element a pass-through one:

<input type="date" jsf:id="date" name="date"
value="#{reservationBean.date}" required="required"
title="Enter or choose a date."/>

The field for the number of tickets, however, uses the h:passThroughAttributes tag to pass a Map
defined in the managed bean. It also recalculates the total in response to a change in the field:

<h:inputText id="tickets" value="#{reservationBean.tickets}">
<f:passThroughAttributes value="#{reservationBean.ticketAttrs}"/>
<f:ajax event="change" render="total"
listener="#{reservationBean.calculateTotal}"/>
</h:inputText>

The field for the price specifies the number type as a pass-through attribute of the h:inputText
element, offering a range of four ticket prices. Here, the p prefix on the HTML5 attributes passes
them through to the browser uninterpreted by the Jakarta Faces input component:

<h:inputText id="price" p:type="number"
value="#{reservationBean.price}"
p:min="80" p:max="120"
p:step="20" p:required="required"
p:title="Enter a price: 80, 100, 120, or 140.">
<f:ajax event="change" render="total"
listener="#{reservationBean.calculateTotal}"/>

104

</h:inputText>

The output of the calculateTotal method that is specified as the listener for the Ajax event is
rendered in the output element whose id and name value is total. See [web:faces-ajax::faces-
ajax:::_using_ajax_with_jakarta_faces_technology], for more information.

The second Facelets page, confirmation.xhtml, uses a pass-through output element to display the
values entered by the user and provides a Facelets h:commandButton tag to allow the user to return to
the reservation.xhtml page.

The Managed Bean for the reservation Application

The session-scoped managed bean for the reservation application, ReservationBean.java, contains
properties for all the elements on the Facelets pages. It also contains two methods, calculateTotal
and clear, that act as listeners for Ajax events on the reservation.xhtml page.

To Build, Package, and Deploy the reservation Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4, Select the reservation folder.
5. Click Open Project.

6. In the Projects tab, right-click the reservation project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the reservation Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/reservation/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, reservation.war, that is
located in the target directory. It then deploys the WAR file to your GlassFish Server instance.

105

To Run the reservation Example

At the time of the publication of this tutorial, the browser that most fully implements HTML5 is
Google Chrome, and it is recommended that you use it to run this example. Other browsers are
catching up, however, and may work equally well by the time you read this.

1. Enter the following URL in your web browser:
http://localhost:8080/reservation

2. Enter information in the fields of the reservation.xhtml page.

The Performance Date field has a date field with up and down arrows that allow you to
increment and decrement the month, day, and year as well as a larger down arrow that brings
up a date editor in calendar form.

The Number of Tickets and Ticket Price fields also have up and down arrows that allow you to
increment and decrement the values within the allowed range and steps. The Estimated Total
changes when you change either of these two fields.

Email addresses and dates are checked for format, but not for validity (you can make a
reservation for a past date, for instance).

3. Click Make Reservation to complete the reservation or Clear to restore the fields to their default
values.
4. If you click Make Reservation, the confirmation.xhtml page appears, displaying the submitted

values.

Click Back to return to the reservation.xhtml page.

Expression Language

This chapter introduces the Expression Language (also referred to as the EL), which provides an
important mechanism for enabling the presentation layer (web pages) to communicate with the
application logic (managed beans). The EL is used by several Jakarta EE technologies, such as
Jakarta Faces technology, Jakarta Server Pages technology, and Dependency Injection for Jakarta EE
(CDD). The EL can also be used in stand-alone environments. This chapter only covers the use of the
EL in Jakarta EE containers.

Overview of the EL

The EL allows page authors to use simple expressions to dynamically access data from JavaBeans
components. For example, the test attribute of the following conditional tag is supplied with an EL
expression that compares 0 with the number of items in the session-scoped bean named cart.

<c:if test="${sessionScope.cart.numberOfItems > 0}">

106

</eiif>
See Using the EL to Reference Managed Beans for more information on how to use the EL in Jakarta
Faces applications.
To summarize, the EL provides a way to use simple expressions to perform the following tasks:

* Dynamically read application data stored in JavaBeans components, various data structures,
and implicit objects

Dynamically write data, such as user input into forms, to JavaBeans components

Invoke arbitrary static and public methods
* Dynamically perform arithmetic, boolean, and string operations
* Dynamically construct collection objects and perform operations on collections

In a Jakarta Faces page, an EL expression can be used either in static text or in the attribute of a
custom tag or standard action.

Finally, the EL provides a pluggable API for resolving expressions so that custom resolvers that can
handle expressions not already supported by the EL can be implemented.

Immediate and Deferred Evaluation Syntax

The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation
means that the expression is evaluated and the result returned as soon as the page is first rendered.
Deferred evaluation means that the technology using the expression language can use its own
machinery to evaluate the expression sometime later during the page’s lifecycle, whenever it is
appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose
evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, Jakarta Faces technology uses mostly deferred evaluation
expressions. During the lifecycle, component events are handled, data is validated, and other tasks
are performed in a particular order. Therefore, a Jakarta Faces implementation must defer
evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can appear as
part of a template (static) text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation
expression that updates the quantity of books retrieved from the backing bean named catalog:

<h:outputText value="${catalog.bookQuantity}" />

107

The Jakarta Faces implementation evaluates the expression ${catalog.bookQuantity}, converts it,
and passes the returned value to the tag handler. The value is updated on the page.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of a
page lifecycle as defined by whatever technology is using the expression. In the case of Jakarta
Faces technology, its controller can evaluate the expression at different phases of the lifecycle,
depending on how the expression is being used in the page.

The following example shows a Jakarta Faces h:inputText tag, which represents a field component
into which a user enters a value. The h:inputText tag’s value attribute references a deferred
evaluation expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{customer.name}" />

For an initial request of the page containing this tag, the Jakarta Faces implementation evaluates
the #{customer.name} expression during the render-response phase of the lifecycle. During this
phase, the expression merely accesses the value of name from the customer bean, as is done in
immediate evaluation.

For a postback request, the Jakarta Faces implementation evaluates the expression at different
phases of the lifecycle, during which the value is retrieved from the request, validated, and
propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

* Value expressions that can be used to both read and write data
* Method expressions

Value expressions (both immediate and deferred) and method expressions are explained in the
next section.

Value and Method Expressions

The EL defines two kinds of expressions: value expressions and method expressions. Value
expressions can be evaluated to yield a value, and method expressions are used to reference a
method.

Value Expressions

Value expressions can be further categorized into rvalue and [value expressions. An lvalue
expression can specify a target, such as an object, a bean property, or elements of a collection, that
can be assigned a value. An rvalue expression cannot specify such a target.

All expressions that are evaluated immediately use the ${} delimiters, and although the expression
can be an lvalue expression, no assignments will ever happen. Expressions whose evaluation can be
deferred use the #{} delimiters and can act as both rvalue and lvalue expressions; if the expression
is an lvalue expression, it can be assigned a new value. Consider the following two value

108

expressions:

${customer.name}

#{customer.name}

The former uses immediate evaluation syntax, whereas the latter uses deferred evaluation syntax.
The first expression accesses the name property, gets its value, and passes the value to the tag
handler. With the second expression, the tag handler can defer the expression evaluation to a later
time in the page lifecycle if the technology using this tag allows.

In the case of Jakarta Faces technology, the latter tag’s expression is evaluated immediately during
an initial request for the page. During a postback request, this expression can be used to set the
value of the name property with user input.

Referencing Objects

A top-level identifier (such as customer in the expression customer.name) can refer to the following
objects:

* Lambda parameters

e EL variables

Managed beans

Implicit objects

Classes of static fields and methods

To refer to these objects, you write an expression using a variable that is the name of the object. The
following expression references a managed bean called customer:

${customer}

You can use a custom EL resolver to alter the way variables are resolved. For instance, you can
provide an EL resolver that intercepts objects with the name customer, so that ${customer} returns a
value in the EL resolver instead. (Jakarta Faces technology uses an EL resolver to handle managed
beans.)

An enum constant is a special case of a static field, and you can reference such a constant directly.
For example, consider this enum class:

public enum Suit {hearts, spades, diamonds, clubs}

In the following expression, in which mySuit is an instance of Suit, you can compare suit.hearts to
the instance:

109

${mySuit == suit.hearts}

Referencing Object Properties or Collection Elements

To refer to properties of a bean, static fields or methods of a class, or items of a collection, you use
the . or [] notation. The same syntax can be used for attributes of an implicit object, because
attributes are placed in a map.

To reference the name property of the customer bean, use either the expression ${customer.name} or
the expression ${customer["name"]}. Here, the part inside the brackets is a String literal that is the
name of the property to reference. The [] syntax is more general than the . syntax, because the
part inside the brackets can be any String expression, not just literals.

You can use double or single quotes for the String literal. You can also combine the [] and .
notations, as shown here:

${customer.address["street"]}

You can reference a static field or method using the syntax classname.field, as in the following
example:

Boolean.FALSE

The classname is the name of the class without the package name. By default, all the java.lang
packages are imported. You can import other packages, classes, and static fields as needed.

If you are accessing an item in an array or list, you must use the [] notation and specify an index in
the array or list. The index is an expression that can be converted to int. The following example
references the first of the customer orders, assuming that customer.ordersisa List:

${customer.orders[1]}

If you are accessing an item in a Map, you must specify the key for the Map. If the key is a String
literal, the dot (.) notation can be used. Assuming that customer.orders is a Map with a String key,
the following examples reference the item with the key "socks":

${customer.orders["socks"]}

${customer.orders.socks}

Referencing Literals

The EL defines the following literals:

¢ Boolean: true and false

110

Integer: As in Java
* Floating-point: As in Java

* String: With single and double quotes; " is escaped as \", ' is escaped as \', and \ is escaped as
\\

Null: null

Here are some examples:

o ${"literal"}
o §{true}
« ${57}

Parameterized Method Calls
The EL offers support for parameterized method calls.

Both the . and [] operators can be used for invoking method calls with parameters, as shown in the
following expression syntax:

e expr-alexpr-b](parameters)

e expr-a.identifier-b(parameters)

In the first expression syntax, expr-a is evaluated to represent a bean object. The expression expr-b
is evaluated and cast to a string that represents a method in the bean represented by expr-a. In the
second expression syntax, expr-a is evaluated to represent a bean object, and identifier-b is a string
that represents a method in the bean object. The parameters in parentheses are the arguments for
the method invocation. Parameters can be zero or more values of expressions, separated by
commas.

Parameters are supported for both value expressions and method expressions. In the following
example, which is a modified tag from the guessnumber application, a random number is provided
as an argument rather than from user input to the method call:

<h:inputText value="#{userNumberBean.userNumber('5"')}">

The preceding example uses a value expression.

Consider the following example of a Jakarta Faces component tag that uses a method expression:

<h:commandButton action="#{trader.buy}" value="buy"/>

The EL expression trader.buy calls the trader bean’s buy method. You can modify the tag to pass on
a parameter. Here is the revised tag in which a parameter is passed:

<h:commandButton action="#{trader.buy('SOMESTOCK")}" value="buy"/>

111

In the preceding example, you are passing the string 'SOMESTOCK" (a stock symbol) as a parameter to
the buy method.

Where Value Expressions Can Be Used
Value expressions using the ${} delimiters can be used

e In static text

* In any standard or custom tag attribute that can accept an expression

The value of an expression in static text is computed and inserted into the current output. Here is
an example of an expression embedded in static text:

<some:tag>
some text ${expr} some text
</some:tag>

A tag attribute can be set in the following ways.

* With a single expression construct:

<some:tag value="${expr}"/>

<another:tag value="#{expr}"/>

These expressions are evaluated, and the result is converted to the attribute’s expected type.

* With one or more expressions separated or surrounded by text:

<some:tag value="some${expr}${expr}text${expr}"/>

<another:tag value="some#i{expr}Hi{expr}text#{expr}"/>

These kinds of expression, called composite expressions, are evaluated from left to right. Each
expression embedded in the composite expression is converted to a String and then
concatenated with any intervening text. The resulting String is then converted to the attribute’s
expected type.

* With text only:

<some:tag value="sometext"/>

The attribute’s String value is converted to the attribute’s expected type.

You can use the string concatenation operator += to create a single expression from what would
otherwise be a composite expression. For example, you could change the composite expression

112

<some:tag value="sometext ${expr} moretext"/>

to

<some:tag value="8${sometext += expr += moretext}"/>

All expressions used to set attribute values are evaluated in the context of an expected type. If the
result of the expression evaluation does not match the expected type exactly, a type conversion will
be performed. For example, the expression ${1.2E4} provided as the value of an attribute of type
float will result in the following conversion:

Float.valueOf("1.2E4").floatValue()

Method Expressions

Another feature of the EL is its support of deferred method expressions. A method expression is
used to refer to a public method of a bean and has the same syntax as an lvalue expression.

In Jakarta Faces technology, a component tag represents a component on a page. The component
tag uses method expressions to specify methods that can be invoked to perform some processing
for the component. These methods are necessary for handling events that the components generate
and for validating component data, as shown in this example:

<h:form>
<h:inputText id="name"
value="#{customer.name}"
validator="#{customer.validateName}"/>
<h:commandButton id="submit"
action="#{customer.submit}" />
</h:form>

The h:inputText tag displays as a field. The validator attribute of this h:inputText tag references a
method, called validateName, in the bean, called customer.

Because a method can be invoked during different phases of the lifecycle, method expressions must
always use the deferred evaluation syntax.

Like lvalue expressions, method expressions can use the . and the [] operators. For example,
#{object.method} is equivalent to #{object["method"]}. The literal inside the [] is converted to String
and is used to find the name of the method that matches it.

Method expressions can be used only in tag attributes and only in the following ways:

» With a single expression construct, where bean refers to a JavaBeans component and method
refers to a method of the JavaBeans component:

113

<some:tag value="#{bean.method}"/>

The expression is evaluated to a method expression, which is passed to the tag handler. The
method represented by the method expression can then be invoked later.

* With text only:
<some:tag value="sometext"/>

Method expressions support literals primarily to support action attributes in Jakarta Faces
technology. When the method referenced by this method expression is invoked, the method
returns the String literal, which is then converted to the expected return type, as defined in the
tag’s tag library descriptor.

Lambda Expressions

A lambda expression is a value expression with parameters. The syntax is similar to that of the
lambda expression in the Java programming language, except that in the EL, the body of the
lambda expression is an EL expression.

For basic information on lambda expressions, see https://docs.oracle.com/javase/tutorial/java/
javaOO/lambdaexpressions.html.

0 Lambda expressions are part of Java SE 8

A lambda expression uses the arrow token (->) operator. The identifiers to the left of the operator
are called lambda parameters. The body, to the right of the operator, must be an EL expression. The
lambda parameters are enclosed in parentheses; the parentheses can be omitted if there is only one
parameter. Here are some examples:

X -> x+1
(X, y) >x+y
() -> 64

A lambda expression behaves like a function. It can be invoked immediately. For example, the
following invocation evaluates to 7:

((x, y) >x+y)@3, 4)

You can use a lambda expression in conjunction with the assignment and semicolon operators. For
example, the following code assigns the previous lambda expression to a variable and then invokes
it. The result is again 7:

v=o(x,y) ->x+y; v(3, 4)

114

https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html
https://docs.oracle.com/javase/tutorial/java/javaOO/lambdaexpressions.html

A lambda expression can also be passed as an argument to a method and be invoked in the method.
It can also be nested in another lambda expression.

Operations on Collection Objects

The EL supports operations on collection objects: sets, lists, and maps. It allows the dynamic
creation of collection objects, which can then be operated on using streams and pipelines.

0 Like lambda expressions, operations on collection objects are part of Java SE 8.

For example, you can construct a set as follows:

{1,2,3}
You can construct a list as follows; a list can contain various types of items:

[1,2,3]
[1, "two", [three,four]]

You can construct a map by using a colon to define the entries, as follows:
{"one":1, "two":2, "three":3}

You operate on collection objects using method calls to the stream of elements derived from the
collection. Some operations return another stream, which allows additional operations. Therefore,
you can chain these operations together in a pipeline.

A stream pipeline consists of the following:

* A source (the Stream object)
* Any number of intermediate operations that return a stream (for example, filter and map)

* A terminal operation that does not return a stream (for example, toList())

The stream method obtains a Stream from a java.util.Collection or a Java array. The stream
operations do not modify the original collection object.

For example, you might generate a list of titles of history books as follows:

books.stream().filter(b->b.category == "history")
.map(b->b.title)
.tolist()

The following simpler example returns a sorted version of the original list:

115

[1,3,5,2].stream().sorted().tolList()

Streams and stream operations are documented in the Java SE 8 API documentation, available at
https://docs.oracle.com/javase/8/docs/api/. The following subset of operations is supported by the EL:

allMatch anyMatch average count
distinct filter findFirst flatMap
forEach iterator limit map

max min noneMatch peek
reduce sorted substream sum

toArray tolist

See the Expression Language specification at https://jakarta.ee/specifications/expression-language/
4.0/ for details on these operations.

Operators

In

addition to the . and [] operators discussed in Value and Method Expressions, the EL provides

the following operators, which can be used in rvalue expressions only.

Arithmetic: +, - (binary), *, / and div, % and mod, - (unary).
String concatenation: +=.
Logical: and, &&, or, ||, not, !.

Relational: ==, eq, !=, ne, <, 1t, >, gt, <=, ge, >=, le. Comparisons can be made against other values
or against Boolean, string, integer, or floating-point literals.

Empty: The empty operator is a prefix operation that can be used to determine whether a value
is null or empty.

Conditional: A ? B : C. Evaluate B or (, depending on the result of the evaluation of A.
Lambda expression: ->, the arrow token.
Assignment: =.

Semicolon: ;.

The precedence of operators, highest to lowest, left to right, is as follows:

[1.

() (used to change the precedence of operators)
- (unary) not ! empty

* / div % mod

+ - (binary)

+=

<> <= >= 1t gt le ge

116

https://docs.oracle.com/javase/8/docs/api/
https://jakarta.ee/specifications/expression-language/4.0/
https://jakarta.ee/specifications/expression-language/4.0/

o == |=eq ne
e && and

e || or

Reserved Words

The following words are reserved for the EL and should not be used as identifiers:

and or not eq
ne 1t gt le
ge true false null
instanceof empty div mod

Examples of EL Expressions

Example Expressions contains example EL expressions and the result of evaluating them.

Example Expressions

EL Expression Result
${1 > (4/2)} false
${4.0 >= 3} true
${100.0 == 100} true
${(10*10) ne 100} false
${'a' > 'b'"} false
${'hip' 1t 'hit'} true
${4 > 3} true
${1.2E4 + 1.4} 12001.4
${3 div 4} 0.75
${10 mod 4} 2
${((x, y) » x +y)(3, 5.5)} 8.5
[1,2,3,4].stream().sum() 10

[1,3,5,2].stream().sorted().toList() [1, 2, 3, 5]

${!empty param.Add} False if the request parameter named
Add is null or an empty string

${pageContext.request.contextPath} The context path

117

EL Expression Result

${sessionScope.cart.numberOfItems} The value of the numberOfItems
property of the session-scoped
attribute named cart

${param['mycom.productId']} The value of the request parameter
named mycom.productId

${header["host"]} The host

${departments[deptName]} The value of the entry named deptName

in the departments map

${requestScope['jakarta.servlet.forwa The value of the request-scoped

rd.servlet_path']} attribute named
jakarta.servlet.forward.servlet_path

#{customer.1Name} Gets the value of the property 1Name
from the customer bean during an
initial request; sets the value of 1Name
during a postback

#{customer.calcTotal} The return value of the method

calcTotal of the customer bean
Further Information about the Expression Language
For more information about the Expression Language, see

* The Expression Language 4.0 specification:
https://jakarta.ee/specifications/expression-language/4.0/

» The EL specification website:
https://github.com/eclipse-ee4j/el-ri/tree/master/spec

Using Jakarta Faces Technology in Web Pages

Web pages (Facelets pages, in most cases) represent the presentation layer for web applications.
The process of creating web pages for a Jakarta Faces application includes using component tags to
add components to the page and wire them to backing beans, validators, listeners, converters, and
other server-side objects that are associated with the page.

This chapter explains how to create web pages using various types of component and core tags. In
the next chapter, you will learn about adding converters, validators, and listeners to component
tags to provide additional functionality to components.

Many of the examples in this chapter are taken from Duke’s Bookstore Case Study Example

Setting Up a Page

A typical Jakarta Faces web page includes the following elements:

118

https://jakarta.ee/specifications/expression-language/4.0/
https://github.com/eclipse-ee4j/el-ri/tree/master/spec

* A set of namespace declarations that declare the Jakarta Faces tag libraries
* Optionally, the HTML head (h:head) and body (h:body) tags

* A form tag (h:form) that represents the user input components

To add the Jakarta Faces components to your web page, you need to provide the page access to the
two standard tag libraries: the Jakarta Faces HTML render kit tag library and the Jakarta Faces core
tag library. The Jakarta Faces standard HTML tag library defines tags that represent common HTML
user interface components. The Jakarta Faces core tag library defines tags that perform core actions
and are independent of a particular render Kit.

For a complete list of Jakarta Faces Facelets tags and their attributes, refer to the Jakarta Faces
Facelets Tag Library documentation.

To use any of the Jakarta Faces tags, you need to include appropriate directives at the top of each
page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library URI and
the tag prefix.

For example, when you create a Facelets XHTML page, include namespace directives as follows:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/html"
xmlns:f="http://xmlns.jcp.org/jsf/core">

The XML namespace URI identifies the tag library location, and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead of
the standard h or f. However, when including the tag in the page you must use the prefix that you
have chosen for the tag library. For example, in the following web page the form tag must be
referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in the HTML tag library:

<h:form ...>

The sections Adding Components to a Page Using HTML Tag Library Tags and Using Core Tags
describe how to use the component tags from the Jakarta Faces standard HTML tag library and the
core tags from the Jakarta Faces core tag library.

Adding Components to a Page Using HTML Tag Library Tags

The tags defined by the Jakarta Faces standard HTML tag library represent HTML form components
and other basic HTML elements. These components display data or accept data from the user. This
data is collected as part of a form and is submitted to the server, usually when the user clicks a
button. This section explains how to use each of the component tags shown in The Component Tags.

The Component Tags

119

https://jakarta.ee/specifications/faces/3.0/renderkitdoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

Tag

h:column

h:commandButt
on

h:commandLink

h:dataTable

h:form

h:graphicImag

h:inputFile

h:inputHidden

h:inputSecret

h:inputText
h:inputTextar
ea

h:message
h:messages
h:outputForma

t

h:outputlabel

120

Functions

Represents a column of data

in a data component

Submits a form to the
application

Links to another page or
location on a page

Represents a data wrapper

Represents an input form
(inner tags of the form

receive the data that will be

submitted with the form)
Displays an image
Allows a user to upload a
file

Allows a page author to

include a hidden variable in

a page
Allows a user to input a
string without the actual

string appearing in the field

Allows a user to input a
string

Allows a user to enter a
multiline string

Displays a localized message

Displays localized messages

Displays a formatted
message

Displays a nested
component as a label for a
specified input field

Rendered As

A column of data in an
HTML table

An HTML <input type=
value> element for which
the type value can be

“submit”, “reset”, or “image”

An HTML <a href> element

An HTML <table> element

An HTML <form> element

An HTML element

An HTML <input
type="file"> element

An HTML <input
type="hidden"> element

An HTML <input
type="password"> element

An HTML <input
type="text"> element

An HTML <textarea>
element

An HTML tag if styles

are used

A set of HTML tags if

styles are used

Plain text

An HTML <label> element

Appearance

A column in a table

A button

A link

A table that can be
updated dynamically

No appearance

An image

A field with a Browse...
button

No appearance

A field that displays a
row of characters
instead of the actual
string entered

A field

A multirow field

A text string

A text string

Plain text

Plain text

Tag Functions Rendered As Appearance

hioutputlink Links to another pageor ~ An HTML <a> element A link
location on a page without
generating an action event

hioutputText Displays a line of text Plain text Plain text
hipanelGrid Displays a table An HTML <table> element A table
with <tr> and <td> elements

h:panelGroup Groups a set of components A HTML <div> or A row in a table

under one parent element
hiselectBoole Allows a user to change the An HTML <input A check box
anCheckbox value of a Boolean choice type="checkbox"> element
h:selectManyC Displays a set of check boxes A set of HTML <input> A group of check boxes
heckbox from which the user can elements of type checkbox

select multiple values

h:selectManylL Allows a user to select An HTML <select> element A box
istbox multiple items from a set of
items all displayed at once

h:selectManyM Allows a user to select An HTML <select> element A menu
enu multiple items from a set of
items

h:selectOneli Allows a user to select one An HTML <select> element A box
stbox item from a set of items all
displayed at once

h:selectOneMe Allows a user to select one An HTML <select> element A menu

nu item from a set of items
hiselectOneRa Allows a user to select one An HTML <input A group of options
dio

item from a set of items type="radio"> element
For a standalone radio

button, use the group
attribute.

The tags correspond to components in the jakarta.faces.component package. The components are
discussed in more detail in [web:faces-develop::faces-
develop:::_developing with_jakarta_faces_technology]

The next section explains the important attributes that are common to most component tags. For
each of the components discussed in the following sections, Writing Bean Properties explains how
to write a bean property bound to that particular component or its value.

For reference information about the tags and their attributes, see the Jakarta Faces Facelets Tag
Library documentation.

121

https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

Common Component Tag Attributes
Most of the component tags support the attributes shown in Common Component Tag Attributes.

Common Component Tag Attributes
Attribute Description

binding Identifies a bean property and binds the component
instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and
conversion associated with the component should happen
when request parameter values are applied.

rendered Specifies a condition under which the component should
be rendered. If the condition is not satisfied, the
component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.

styleClass Specifies a CSS class that contains definitions of the styles.

value Specifies the value of the component in the form of a value
expression.

All the tag attributes except id can accept expressions, as defined by the Expression Language,
described in [web:faces-el::faces-el:::_expression_language].

An attribute such as rendered or value can be set on the page and then modified in the backing bean
for the page.

The id Attribute

The id attribute is not usually required for a component tag but is used when another component
or a server-side class must refer to the component. If you don’t include an id attribute, the Jakarta
Faces implementation automatically generates a component ID. Unlike most other Jakarta Faces tag
attributes, the id attribute takes expressions using only the evaluation syntax described in
Immediate Evaluation, which uses the ${} delimiters. For more information on expression syntax,
see Value Expressions.

The immediate Attribute

Input components and command components (those that implement the ActionSource interface,
such as buttons and links) can set the immediate attribute to true to force events, validations, and
conversions to be processed when request parameter values are applied.

You need to carefully consider how the combination of an input component’s immediate value and a
command component’s immediate value determines what happens when the command component
is activated.

Suppose that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If the immediate attributes of both the button and the field are set to true, the new

122

value entered in the field will be available for any processing associated with the event that is
generated when the button is clicked. The event associated with the button as well as the events,
validation, and conversion associated with the field are all handled when request parameter values
are applied.

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to false, the
event associated with the button is processed without updating the field’s local value to the model
layer. The reason is that any events, conversion, and validation associated with the field occur after
request parameter values are applied.

The bookshowcart.xhtml page of the Duke’s Bookstore case study has examples of components using
the immediate attribute to control which component’s data is updated when certain buttons are
clicked. The quantity field for each book does not set the immediate attribute, so the value is false
(the default).

<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="0"/>

</h:inputText>

The immediate attribute of the Continue Shopping hyperlink is set to true, while the immediate
attribute of the Update Quantities hyperlink is set to false:

<h:commandLink id="continue"
action="bookcatalog"
immediate="true">
<h:outputText value="#{bundle.ContinueShopping}"/>
</h:commandLink>

<h:commandLink id="update"
action="#{showcart.update}"
immediate="false">
<h:outputText value="#{bundle.UpdateQuantities}"/>
</h:commandLink>

If you click the Continue Shopping hyperlink, none of the changes entered into the quantity input
fields will be processed. If you click the Update Quantities hyperlink, the values in the quantity
fields will be updated in the shopping cart.

The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to determine
whether the component will be rendered. For example, the commandLink component in the following
section of a page is not rendered if the cart contains no items:

123

<h:commandLink id="check" ... rendered="#{cart.numberOfItems > 0}">
<h:outputText value="#{bundle.CartCheck}"/>
</h:commandLink>

Unlike nearly every other Jakarta Faces tag attribute, the rendered attribute is restricted to using
rvalue expressions. As explained in Value and Method Expressions, these rvalue expressions can
only read data; they cannot write the data back to the data source. Therefore, expressions used
with rendered attributes can use the arithmetic operators and literals that rvalue expressions can
use but lvalue expressions cannot use. For example, the expression in the preceding example uses
the > operator.

In this example and others, bundle refers to a java.util.ResourceBundle file that
o contains locale-specific strings to be displayed. Resource bundles are discussed in
[web:webil8n::webil8n:::_internationalizing_and_localizing_web_applications].

The style and styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered output of your
tags. Displaying Error Messages with the h:message and h:messages Tags describes an example of
using the style attribute to specify styles directly in the attribute. A component tag can instead
refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class list-
background:

<h:dataTable id="1items"

styleClass="1ist-background"
value="#{cart.items}"
var="book">

The style sheet that defines this class is stylesheet.css, which will be included in the application.
For more information on defining styles, see the Cascading Style Sheets specifications and drafts at
https://www.w3.org/Style/CSS/.

The value and binding Attributes

A tag representing an output component uses the value and binding attributes to bind its
component’s value or instance, respectively, to a data object. The value attribute is used more
commonly than the binding attribute, and examples appear throughout this chapter. For more
information on these attributes, see Creating a Managed Bean, Writing Properties Bound to
Component Values, and Writing Properties Bound to Component Instances.

Adding HTML Head and Body Tags

The HTML head (h:head) and body (h:body) tags add HTML page structure to Jakarta Faces web
pages.

124

https://www.w3.org/Style/CSS/

* The h:head tag represents the head element of an HTML page.

* The h:body tag represents the body element of an HTML page.

The following is an example of an XHTML page using the usual head and body markup tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Add a title</title>
</head>
<body>
Add Content
</body>
</html>

The following is an example of an XHTML page using h:head and h:body tags:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head>
Add a title
</h:head>
<h:body>
Add Content
</h:body>
</html>

Both of the preceding example code segments render the same HTML elements. The head and body
tags are useful mainly for resource relocation. For more information on resource relocation, see

Resource Relocation Using h:outputScript and h:outputStylesheet Tags.

Adding a Form Component

An h:form tag represents an input form, which includes child components that can contain data that

is either presented to the user or submitted with the form.

Figure 17, “A Typical Form” shows a typical login form in which a user enters a user name and

password, then submits the form by clicking the Login button.

User Name: Duke

PaSSWOI‘d: sheskeske sk ofesfesfeske ke ok el

Figure 17. A Typical Form

125

The h:form tag represents the form on the page and encloses all the components that display or
collect data from the user, as shown here:

<h:form>
. other Jakarta Faces tags and other content...
</h:form>

The h:form tag can also include HTML markup to lay out the components on the page. Note that the
h:form tag itself does not perform any layout; its purpose is to collect data and to declare attributes
that can be used by other components in the form.

A page can include multiple h:form tags, but only the values from the form submitted by the user
will be included in the postback request.

Using Text Components

Text components allow users to view and edit text in web applications. The basic types of text
components are as follows:

* Label, which displays read-only text

* Field, which allows users to enter text (on one or more lines), often to be submitted as part of a
form

» Password field, which is a type of field that displays a set of characters, such as asterisks,
instead of the password text that the user enters

Figure 18, “Example Text Components” shows examples of these text components.

Label User Name: Duke Text Field
Password: kst kokokskokk Password Field
Comments: A user can enter text Text Area

across multiple lines.

Figure 18. Example Text Components

Text components can be categorized as either input or output. A Jakarta Faces output component,
such as a label, is rendered as read-only text. A Jakarta Faces input component, such as a field, is
rendered as editable text.

The input and output components can each be rendered in various ways to display more
specialized text.

Input Tags lists the tags that represent the input components.

Input Tags

126

Tag Function

h:inputHidden Allows a page author to include a hidden variable in a
page

h:inputSecret The standard password field: accepts one line of text with
no spaces and displays it as a set of asterisks as it is
entered

h:inputText The standard field: accepts a one-line text string

h:inputTextarea The standard multiline field: accepts multiple lines of text

The input tags support the tag attributes shown in Input Tag Attributes in addition to those
described in Common Component Tag Attributes. Note that this table does not include all the
attributes supported by the input tags but just those that are used most often. For the complete list
of attributes, refer to the Jakarta Faces Facelets Tag Library documentation.

Input Tag Attributes
Attribute Description
converter Identifies a converter that will be used to convert the

component’s local data. See Using the Standard Converters
for more information on how to use this attribute.

converterMessage Specifies an error message to display when the converter
registered on the component fails.

dir Specifies the direction of the text displayed by this
component. Acceptable values are 1tr, meaning left to
right, and rt1, meaning right to left.

label Specifies a name that can be used to identify this
component in error messages.

lang Specifies the code for the language used in the rendered
markup, such as en or pt-BR.

required Takes a boolean value that indicates whether the user must
enter a value in this component.

requiredMessage Specifies an error message to display when the user does
not enter a value into the component.

validator Identifies a method expression pointing to a managed
bean method that performs validation on the component’s
data. See Referencing a Method That Performs Validation
for an example of using the f:validator tag.

validatorMessage Specifies an error message to display when the validator
registered on the component fails to validate the
component’s local value.

127

https://jakarta.ee/specifications/faces/3.0/vdldoc/

Attribute Description

valueChangelistene Identifies a method expression that points to a managed

r bean method that handles the event of entering a value in
this component. See Referencing a Method That Handles a
Value-Change Event for an example of using
valueChangelListener.

Output Tags lists the tags that represent the output components.

Output Tags

Tag Function

h:outputFormat Displays a formatted message

h:outputlabel The standard read-only label: displays a component as a
label for a specified input field

h:outputlink Displays an <a href> tag that links to another page without
generating an action event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in Common
Component Tag Attributes.

The rest of this section explains how to use some of the tags listed in Output Tags. The other tags are
written in a similar way.

Rendering a Field with the h:inputText Tag

The h:inputText tag is used to display a field. A similar tag, the h:outputText tag, displays a read-
only, single-line string. This section shows you how to use the h:inputText tag. The h:outputText tag
is written in a similar way.

Here is an example of an h:inputText tag:

<h:inputText id="name"

label="Customer Name"

size="30"

value="#{cashierBean.name}"

required="true"

requiredMessage="#{bundle.ReqCustomerName}">

<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />

</h:inputText>

The 1abel attribute specifies a user-friendly name that will be used in the substitution parameters
of error messages displayed for this component.

The value attribute refers to the name property of a managed bean named CashierBean. This property

128

holds the data for the name component. After the user submits the form, the value of the name
property in CashierBean will be set to the text entered in the field corresponding to this tag.

The required attribute causes the page to reload, displaying errors, if the user does not enter a value
in the name field. The Jakarta Faces implementation checks whether the value of the component is
null or is an empty string.

If your component must have a non-null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a required
attribute that is set to true and the value is null or a zero-length string, no other validators that are
registered on the tag are called. If your tag does not have a required attribute set to true, other
validators that are registered on the tag are called, but those validators must handle the possibility
of a null or zero-length string. See Validating Null and Empty Strings for more information.

Rendering a Password Field with the h:inputSecret Tag

The h:inputSecret tag renders an <input type="password"> HTML tag. When the user types a string
into this field, a row of asterisks is displayed instead of the text entered by the user. Here is an
example:

<h:inputSecret redisplay="false" value="#{loginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from being
displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label with the h:outputLabel Tag

The h:outputlabel tag is used to attach a label to a specified input field for the purpose of making it
accessible. The following page uses an h:outputlLabel tag to render the label of a check box:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}">
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputlLabel>

The h:selectBooleanCheckbox tag and the h:outputlLabel tag have rendered attributes that are set to
false on the page but are set to true in the CashierBean under certain circumstances. The for
attribute of the h:outputlLabel tag maps to the id of the input field to which the label is attached. The
h:outputText tag nested inside the h:outputlLabel tag represents the label component. The value
attribute on the h:outputText tag indicates the text that is displayed next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the

129

h:outputlLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h:outputlLabel tag to specify the text of
the label:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputlLabel>

Rendering a Link with the h:outputLink Tag

The h:outputlLink tag is used to render a link that, when clicked, loads another page but does not
generate an action event. You should use this tag instead of the h:commandLink tag if you always want
the URL specified by the h:outputLink tag’s value attribute to open and do not want any processing
to be performed when the user clicks the link. Here is an example:

<h:outputlLink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the h:outputlLink tag identifies the text that the user clicks to get to the next
page.

Displaying a Formatted Message with the h:outputFormat Tag

The h:outputFormat tag allows display of concatenated messages as a MessageFormat pattern, as
described in the API documentation for java.text.MessageFormat. Here is an example of an
h:outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The f:param tag specifies the substitution
parameters for the message. The value of the parameter replaces the {0} in the sentence. If the
value of "#{hello.name}" is "Bill", the message displayed in the page is as follows:

Hello, Bill!

An h:outputFormat tag can include more than one f:param tag for those messages that have more
than one parameter that must be concatenated into the message. If you have more than one

130

parameter for one message, make sure that you put the f:param tags in the proper order so that the
data is inserted in the correct place in the message. Here is the preceding example modified with an
additional parameter:

<h:outputFormat value="Hello, {@}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression,
bean.numVisitor, in which the property numVisitor of the managed bean bean keeps track of visitors
to the page. This is an example of a value-expression-enabled tag attribute accepting an EL
expression. The message displayed in the page is now as follows:

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing Actions and Navigation

In Jakarta Faces applications, the button and link component tags are used to perform actions, such
as submitting a form, and for navigating to another page. These tags are called command
component tags because they perform an action when activated.

The h:commandButton tag is rendered as a button. The h:commandLink tag is rendered as a link.

In addition to the tag attributes listed in Common Component Tag Attributes, the h:commandButton
and h:commandLink tags can use the following attributes.

* action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is used
to determine what page to access when the command component tag is activated.

» actionlListener, which is a method expression pointing to a bean method that processes an

action event fired by the command component tag.

See Referencing a Method That Performs Navigation for more information on using the action
attribute. See Referencing a Method That Handles an Action Event for details on using the
actionlistener attribute.

Rendering a Button with the h:commandButton Tag

If you are using an h:commandButton component tag, the data from the current page is processed
when a user clicks the button, and the next page is opened. Here is an example of the
h:commandButton tag:

<h:commandButton value="Submit"
action="#{cashierBean.submit}"/>

131

Clicking the button will cause the submit method of CashierBean to be invoked because the action
attribute references this method. The submit method performs some processing and returns a
logical outcome.

The value attribute of the example h:commandButton tag references the button’s label. For
information on how to use the action attribute, see Referencing a Method That Performs
Navigation.

Rendering a Link with the h:commandLink Tag

The h:commandLink tag represents an HTML link and is rendered as an HTML <a> element.

An h:commandLink tag must include a nested h:outputText tag, which represents the text that the user
clicks to generate the event. Here is an example:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

This tag will render HTML that looks something like the following:

<a id="_idt16:Duke" href="#"
onclick="mojarra.jsfcljs(document.getElementById("'j_idt16"'),
{'j_idt16:Duke":"'j_idt16:Duke'},"'");
return false;">My Early Years: Growing Up on Star7, by Duke

o The h:commandLink tag will render JavaScript scripting language. If you use this tag,
make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the h:graphiclmage Tag

In a Jakarta Faces application, use the h:graphicImage tag to render an image on a page:
<h:graphicImage id="mapImage" url="/resources/images/book_all.jpg"/>

In this example, the url attribute specifies the path to the image. The URL of the example tag begins
with a slash (/), which adds the relative context path of the web application to the beginning of the
path to the image.

Alternatively, you can use the facility described in Web Resources to point to the image location.
Here are two examples:

<h:graphicImage id="mapImage"
name="book_all.jpg"

132

library="1images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

<h:graphicImage value="#{resource['images:wave.med.gif']}"/>

You can use similar syntax to refer to an image in a style sheet. The following syntax in a style sheet
specifies that the image is to be found at resources/img/top-background. jpg:

header {
position: relative;
height: 150px;
background: #fff url(#{resource['img:top-background.jpg']}) repeat-x;

Laying Out Components with the h:panelGrid and h:panelGroup Tags

In a Jakarta Faces application, you use a panel as a layout container for a set of other components.
A panel is rendered as an HTML table. Panel Component Tags lists the tags used to create panels.

Panel Component Tags
Tag Attributes Function

h:panelGrid columns, columnClasses, footer(Class, headerClass, Displays a table
panelClass, rowClasses, role

h:panelGroup layout Groups a set of
components under
one parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used to represent
rows in a table. Other tags are used to represent individual cells in the rows.

The columns attribute defines how to group the data in the table and therefore is required if you
want your table to have more than one column. The h:panelGrid tag also has a set of optional
attributes that specify CSS classes: columnClasses, footer(Class, header(lass, panelClass, and
rowClasses. The role attribute can have the value "presentation” to indicate that the purpose of the
table is to format the display rather than to show data.

If the header(lass attribute value is specified, the h:panelGrid tag must have a header as its first
child. Similarly, if a footer(Class attribute value is specified, the h:panelGrid tag must have a footer
as its last child.

Here is an example:

<h:panelGrid columns="2"
header(Class="1list-header"
styleClass="1ist-background"

133

rowClasses="1list-row-even, list-row-odd"
summary="#{bundle.CustomerInfo}"
title="#{bundle.Checkout}"
role="presentation">
<f:facet name="header">
<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputlLabel for="name" value="#{bundle.Name}" />
<h:inputText id="name" size="30"
value="#{cashierBean.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />
</h:inputText>
<h:message styleClass="error-message" for="name"/>

<h:outputlLabel for="ccno" value="#{bundle.CCNumber}"/>

<h:inputText id="ccno"
size="19"
converterMessage="#{bundle.CreditMessage}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">

<f:converter converterId="ccno"/>

<f:validateRegex

pattern="\d{16}|\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}-\d{4}" />
</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

</h:panelGrid>

The preceding h:panelGrid tag is rendered as a table that contains components in which a customer
inputs personal information. This h:panelGrid tag uses style sheet classes to format the table. The
following code shows the 1ist-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

Because the h:panelGrid tag specifies a headerClass, the h:panelGrid tag must contain a header. The
example h:panelGrid tag uses an f:facet tag for the header. Facets can have only one child, so an
h:panelGroup tag is needed if you want to group more than one component within an f:facet. The
example h:panelGrid tag has only one cell of data, so an h:panelGroup tag is not needed. (For more
information about facets, see Using Data-Bound Table Components.

The h:panelGroup tag has an attribute, layout, in addition to those listed in Common Component Tag

134

Attributes. If the layout attribute has the value block, an HTML div element is rendered to enclose
the row; otherwise, an HTML span element is rendered to enclose the row. If you are specifying
styles for the h:panelGroup tag, you should set the layout attribute to block in order for the styles to
be applied to the components within the h:panelGroup tag. You should do this because styles, such as
those that set width and height, are not applied to inline elements, which is how content enclosed
by the span element is defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so that the tree of
components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 2, and therefore the
table will have two columns. The column in which each component is displayed is determined by
the order in which the component is listed on the page modulo 2. So, if a component is the fifth one
in the list of components, that component will be in the 5 modulo 2 column, or column 1.

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value, whether it is the
only value available or one of a set of choices. The most common tags for this kind of component
are as follows:

* An h:selectBooleanCheckbox tag, displayed as a check box, which represents a Boolean state

* An h:selectOneRadio tag, displayed as a set of options

* An h:selectOneMenu tag, displayed as a scrollable list

* An h:selectOnelistbox tag, displayed as an unscrollable list

Figure 19, “Example Components for Selecting One Item” shows examples of these components.

o Language: Chinese A Format: Hardcover
Genre O Fiction
Dutch Paperback
Radio @ Non-fiction English Large-print
Buttons O Reference French Cassette
. German DVD
O Biography
Spanish Ilustrated
Swabhili 4
Availability: |Z| In print
Check Box Drop-Down Menu List Box

Figure 19. Example Components for Selecting One Item

Displaying a Check Box Using the h:selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tag is the only tag that Jakarta Faces technology provides for
representing a Boolean state.

Here is an example that shows how to use the h:selectBooleanCheckbox tag:

<h:selectBooleanCheckbox id="fanClub"

135

rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />

The h:selectBooleanCheckbox tag and the h:outputlLabel tag have rendered attributes that are set to
false on the page but are set to true in the CashierBean under certain circumstances. When the
h:selectBooleanCheckbox tag is rendered, it displays a check box to allow users to indicate whether
they want to join the Duke Fan Club. When the h:outputlLabel tag is rendered, it displays the label
for the check box. The label text is represented by the value attribute.

Displaying a Menu Using the h:selectOneMenu Tag

A component that allows the user to select one value from a set of values can be rendered as a box
or a set of options. This section describes the h:selectOneMenu tag. The h:selectOneRadio and
h:selectOnelListbox tags are used in a similar way. The h:selectOnelListbox tag is similar to the
h:selectOneMenu tag except that h:selectOnelListbox defines a size attribute that determines how
many of the items are displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from which a user can
select one item. This menu component is sometimes known as a drop-down list or a combo box. The
following code snippet shows how the h:selectOneMenu tag is used to allow the user to select a
shipping method:

<h:selectOneMenu id="shippingOption" required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemValue="2" itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5" itemlLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7" itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h:selectOneMenu tag maps to the property that holds the currently selected
item’s value. In this case, the value is set by the backing bean. You are not required to provide a
value for the currently selected item. If you don’t provide a value, the browser determines which
one is selected.

Like the h:selectOneRadio tag, the h:selectOneMenu tag must contain either an f:selectItems tag or a
set of f:selectItem tags for representing the items in the list. Using the fiselectltem and f:selectltems
Tags describes these tags.

Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following component tags:

* An h:selectManyCheckbox tag, displayed as a set of check boxes

136

* An h:selectManyMenu tag, displayed as a menu

* An h:selectManyListbox tag, displayed as a box

Figure 20, “Example Components for Selecting Multiple Values” shows examples of these
components.

G |Z| Fict Language: Chinese A Format: = Hardcover
enre iction

Dutch Paperback
Check E Non-fiction English Large-print
Boxes |:| Reference French Cassette

|:| . German DVD
Biography

Spanish Tustrated

Swahili \'%4

Drop-Down Menu List Box

Figure 20. Example Components for Selecting Multiple Values

These tags allow the user to select zero or more values from a set of values. This section explains
the h:selectManyCheckbox tag. The h:selectManyListbox and h:selectManyMenu tags are used in a
similar way.

Unlike a menu, a list displays a subset of items in a box; a menu displays only one item at a time
when the user is not selecting the menu. The size attribute of the h:selectManylListbox tag
determines the number of items displayed at one time. The box includes a scroll bar for scrolling
through any remaining items in the list.

The h:selectManyCheckbox tag renders a group of check boxes, with each check box representing one
value that can be selected:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the h:selectManyCheckbox tag identifies the newsletters property of the
CashierBean managed bean. This property holds the values of the currently selected items from the
set of check boxes. You are not required to provide a value for the currently selected items. If you
don’t provide a value, the first item in the list is selected by default. In the CashierBean managed
bean, this value is instantiated to 0, so no items are selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page. Because layout is
set to pageDirection, the check boxes are arranged vertically. The default is 1ineDirection, which
aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of check
boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use the f:selectItem tag. The following section explains these tags in more detail.

137

Using the f:selectItem and f:selectItems Tags

The f:selectItem and f:selectItems tags represent components that can be nested inside a
component that allows you to select one or multiple items. An f:selectItem tag contains the value,
label, and description of a single item. An f:selectItems tag contains the values, labels, and
descriptions of the entire list of items.

You can use either a set of f:selectItem tags or a single f:selectItems tag within your component
tag.

The advantages of using the f:selectItems tag are as follows.

* Items can be represented by using different data structures, including Array, Map, and
Collection. The value of the f:selectItems tag can represent even a generic collection of POJOs.

* Different lists can be concatenated into a single component, and the lists can be grouped within
the component.

» Values can be generated dynamically at runtime.
The advantages of using f:selectItem are as follows.

* Items in the list can be defined from the page.

* Less code is needed in the backing bean for the f:selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem tags.

Using the f:selectIltems Tag

The following example from Displaying Components for Selecting Multiple Values shows how to use
the h:selectManyCheckbox tag:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the managed bean property
cashierBean.newsletterItems. The individual SelectItem objects are created programmatically in the
managed bean.

See UlSelectItems Properties for information on how to write a managed bean property for one of
these tags.

Using the f:selectltem Tag

The f:selectItem tag represents a single item in a list of items. Here is the example from Displaying
a Menu Using the h:selectOneMenu Tag once again:

<h:selectOneMenu id="shippingOption"

138

required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the value for the f:selectItem tag. The itemlLabel attribute
represents the String that appears in the list component on the page.

The itemValue and itemlLabel attributes are value-binding enabled, meaning that they can use value-
binding expressions to refer to values in external objects. These attributes can also define literal
values, as shown in the example h:selectOneMenu tag.

Displaying the Results from Selection Components

If you display components that allow a user to select values, you may also want to display the result
of the selection.

For example, you might want to thank a user who selected the checkbox to join the Duke Fan Club,
as described in Displaying a Check Box Using the h:selectBooleanCheckbox Tag. Because the
checkbox is bound to the specialOffer property of CashierBean, a UISelectBoolean value, you can call
the isSelected method of the property to determine whether to render a thank-you message:

<h:outputText value="#{bundle.DukeFanClubThanks}"
rendered="#{cashierBean.specialOffer.isSelected()}"/>

Similarly, you might want to acknowledge that a user subscribed to newsletters using the
h:selectManyCheckbox tag, as described in Displaying Components for Selecting Multiple Values. To
do so, you can retrieve the value of the newsletters property, the String array that holds the
selected items:

<h:outputText value="#{bundle.NewsletterThanks}"
rendered="#{!empty cashierBean.newsletters}"/>

<ui:repeat value="#{cashierBean.newsletters}" var="nli">
<h:outputText value="#{nli}" /></1i>
</ui:repeat>

An introductory thank-you message is displayed only if the newsletters array is not empty. Then a
ui:repeat tag, a simple way to show values in a loop, displays the contents of the selected items in
an itemized list. (This tag is listed in Facelets Templating Tags.)

139

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a Jakarta Faces
application, the h:dataTable component tag supports binding to a collection of data objects and
displays the data as an HTML table. The h:column tag represents a column of data within the table,
iterating over each record in the data source, which is displayed as a row. Here is an example:

<h:dataTable id="1items"

140

captionClass="list-caption"
columnClasses="1ist-column-center, list-column-left,
list-column-right, list-column-center"
footerClass="1ist-footer"

headerClass="1list-header"

rowClasses="list-row-even, list-row-odd"
styleClass="1ist-background"
summary="#{bundle.ShoppingCart}"
value="#{cart.items}"

border="1"
var="1item">
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="1"/>
<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.QuantityChanged"/>
</h:inputText>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer">
<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber currencySymbol="$" type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<f:facet name="caption">

<h:outputText value="#{bundle.Caption}"/>
</f:facet>
</h:dataTable>

The example h:dataTable tag displays the books in the shopping cart as well as the quantity of each
book in the shopping cart, the prices, and a set of buttons the user can click to remove books from
the shopping cart.

The h:column tags represent columns of data in a data component. While the data component is
iterating over the rows of data, it processes the column component associated with each h:column
tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time the
h:dataTable tag iterates through the list of books, it renders one cell in each column.

The h:dataTable and h:column tags use facets to represent parts of the table that are not repeated or
updated. These parts include headers, footers, and captions.

In the preceding example, h:column tags include f:facet tags for representing column headers or
footers. The h:column tag allows you to control the styles of these headers and footers by supporting
the header(Class and footer(Class attributes. These attributes accept space-separated lists of CSS
classes, which will be applied to the header and footer cells of the corresponding column in the
rendered table.

Facets can have only one child, so an h:panelGroup tag is needed if you want to group more than one
component within an f:facet. Because the facet tag representing the footer includes more than one
tag, the h:panelGroup tag is needed to group those tags. Finally, this h:dataTable tag includes an
f:facet tag with its name attribute set to caption, causing a table caption to be rendered above the
table.

This table is a classic use case for a data component because the number of books might not be
known to the application developer or the page author when that application is developed. The
data component can dynamically adjust the number of rows of the table to accommodate the
underlying data.

The value attribute of an h:dataTable tag references the data to be included in the table. This data
can take the form of any of the following:

A list of beans

* An array of beans

A single bean

» A jakarta.faces.model.DataModel object

* A java.sql.ResultSet object

* A jakarta.servlet.jsp.jstl.sql.Result object

* A javax.sql.RowSet object

141

All data sources for data components have a DataModel wrapper. Unless you explicitly construct a
DataModel wrapper, the Jakarta Faces implementation will create one around data of any of the
other acceptable types. See Writing Bean Properties for more information on how to write
properties for use with a data component.

The var attribute specifies a name that is used by the components within the h:dataTable tag as an
alias to the data referenced in the value attribute of h:dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute points
to a single book in that list. As the h:dataTable tag iterates through the list, each reference to item
points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying data. This feature
is not shown in the preceding example. To display a subset of the data, you use the optional first
and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the number of
rows, starting with the first row, to be displayed. For example, if you wanted to display records 2
through 10 of the underlying data, you would set first to 2 and rows to 9. When you display a
subset of the data in your pages, you might want to consider including a link or button that causes
subsequent rows to display when clicked. By default, both first and rows are set to zero, and this
causes all the rows of the underlying data to display.

Optional Attributes for the h:dataTable Tag shows the optional attributes for the h:dataTable tag.

Optional Attributes for the h:dataTable Tag

Attribute Defines Styles For
captionClass Table caption
columnClasses All the columns
footerClass Footer

header(lass Header

rowClasses Rows

styleClass The entire table

Each of the attributes in Optional Attributes for the h:dataTable Tag can specify more than one
style. If columnClasses or rowClasses specifies more than one style, the styles are applied to the
columns or rows in the order that the styles are listed in the attribute. For example, if column(Classes
specifies styles list-column-center and list-column-right, and if the table has two columns, the first
column will have style list-column-center, and the second column will have style list-column-
right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles will
be assigned to columns or rows starting from the first column or row. Similarly, if the style attribute
specifies fewer styles than there are columns or rows, the remaining columns or rows will be
assigned styles starting from the first style.

142

Displaying Error Messages with the h:message and h:messages Tags

The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input component,
whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessnumber-jsf application:

<p>
<h:inputText id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>
</p>
<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errors1"
for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this case,
the error message will appear below the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in this
section, the text will be a shade of red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other attributes
for defining styles. For more information on these attributes, refer to the Jakarta Faces Facelets Tag
Library documentation.

Another attribute supported by the h:messages tag is the layout attribute. Its default value is 1list,
which indicates that the messages are displayed in a bullet list using the HTML ul and 11 elements.
If you set the attribute value to table, the messages will be rendered in a table using the HTML
table element.

The preceding example shows a standard validator that is registered on the input component. The
message tag displays the error message that is associated with this validator when the validator
cannot validate the input component’s value. In general, when you register a converter or validator
on a component, you are queueing the error messages associated with the converter or validator on
the component. The h:message and h:messages tags display the appropriate error messages that are
queued on the component when the validators or converters registered on that component fail to
convert or validate the component’s value.

143

https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for custom
converters and validators by registering custom error messages with the application.

Creating Bookmarkable URLs with the h:button and h:link Tags

The ability to create bookmarkable URLs refers to the ability to generate links based on a specified
navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST requests for data
processing. The GET requests can have query parameters and can be cached, which is not advised
for POST requests, which send data to servers for processing. The other Jakarta Faces tags capable
of generating links use either simple GET requests, as in the case of h:outputlLink, or POST requests,
as in the case of h:commandLink or h:commandButton tags. GET requests with query parameters provide
finer granularity to URL strings. These URLs are created with one or more name=value parameters
appended to the simple URL after a ? character and separated by either &; or & strings.

To create a bookmarkable URL, use an h:link or h:button tag. Both of these tags can generate a link
based on the outcome attribute of the component. For example:

<h:1link outcome="somepage" value="Message" />

The h:1ink tag will generate a URL link that points to the somepage.xhtml file on the same server. The
following sample HTML is generated from the preceding tag, assuming that the application name is
simplebookmark:

Message

This is a simple GET request that cannot pass any data from page to page. To create more complex
GET requests and utilize the complete functionality of the h:1ink tag, use view parameters.

Using View Parameters to Configure Bookmarkable URLs

To pass a parameter from one page to another, use the includeViewParams attribute in your h:1link
tag and, in addition, use an f:param tag to specify the name and value to be passed. Here the h:1link
tag specifies the outcome page as personal.xhtml and provides a parameter named Result whose
value is a managed bean property:

<h:body>
<h:form>
<h:graphicImage url="#{resource['images:duke.waving.qgif']}"
alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p>I've made your
<h:1link outcome="personal" value="personal greeting page!"
includeViewParams="true">
<f:param name="Result" value="#{hello.name}"/>

144

</h:1link>
</p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>

If the includeViewParams attribute is set on the component, the view parameters are added to the
hyperlink. Therefore, the resulting URL will look something like this if the value of hello.name is
Timmy:

http://localhost:8080/bookmarks/personal.xhtml?Result=Timmy

On the outcome page, specify the core tags f:metadata and f:viewparam as the source of parameters
for configuring the URLs. View parameters are declared as part of f:metadata for a page, as shown
in the following example:

<f:metadata>
<f:viewParam name="Result" value="#{hello.name}"/>
</f:metadata>

This allows you to specify the bean property value on the page:
<h:outputText value="Howdy, #{hello.name}!" />
As a view parameter, the name also appears in the page’s URL. If you edit the URL, you change the

output on the page.

Because the URL can be the result of various parameter values, the order of the URL creation has
been predefined. The order in which the various parameter values are read is as follows:

1. Component

2. Navigation-case parameters

3. View parameters

The bookmarks Example Application

The bookmarks example application modifies the hello1 application described in A Web Module That
Uses Jakarta Faces Technology: The hellol Example to use a bookmarkable URL that uses view
parameters.

Like hello1, the application includes the Hello.java managed bean, an index.xhtml page, and a
response.xhtml page. In addition, it includes a personal.xhtml page, to which a bookmarkable URL
and view parameters are passed from the response.xhtml page, as described in Using View
Parameters to Configure Bookmarkable URLs.

You can use either NetBeans IDE or Maven to build, package, deploy, and run the bookmarks

145

example. The source code for this example is in the jakartaee-
examples/tutorial/web/faces/bookmarks/ directory.

To Build, Package, and Deploy the bookmarks Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4, Select the bookmarks folder.
5. Click Open Project.

6. In the Projects tab, right-click the bookmarks project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the bookmarks Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/bookmarks/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, bookmarks.war, that is
located in the target directory. It then deploys the WAR file to your GlassFish Server instance.

To Run the bookmarks Example

1. Enter the following URL in your web browser:

http://localhost:8080/bookmarks

2. In the text field, enter a name and click Submit.

3. On the response page, move your mouse over the "personal greeting page" link to view the URL
with the view parameter, then click the link.

The personal.xhtml page opens, displaying a greeting to the name you typed.

4. In the URL field, modify the Result parameter value and press Return.

146

The name in the greeting changes to what you typed.

Resource Relocation Using h:outputScript and h:outputStylesheet Tags

Resource relocation refers to the ability of a Jakarta Faces application to specify the location where
a resource can be rendered. Resource relocation can be defined with the following HTML tags:

e h:outputScript
* h:outputStylesheet

These tags have name and target attributes, which can be used to define the render location. For a
complete list of attributes for these tags, see the Jakarta Faces Facelets Tag Library documentation.

For the h:outputScript tag, the name and target attributes define where the output of a resource may
appear. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="http://xmlns.jcp.org/jsf/htm1">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Because the target attribute is not defined in the tags, the style sheet hello.css is rendered in the
head element of the page, and the hello.js script is rendered in the body of the page.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/jakarta.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
<script type="text/javascript"
src="/context-root/jakarta.faces.resource/hello.js">
</script>
</form>
</body>

147

https://jakarta.ee/specifications/faces/3.0/vdldoc/

</html>

If you set the target attribute for the h:outputScript tag, the incoming GET request provides the
location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="http://xmlns.jcp.org/jsf/html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: The style sheet is rendered in the head, and the script is rendered inline. However, if
the incoming request specifies the location parameter as the head, both the style sheet and the
script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/jakarta.faces.resource/hello.css"/>
<script type="text/javascript"
src="/context-root/jakarta.faces.resource/hello.js">

</script>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
</form>
</body>

</html>
Similarly, if the incoming request provides the location parameter as the body, the script will be
rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can add even
more functionality for the components and pages. A page author does not have to know the
location of a resource or its placement.

148

By using a @ResourceDependency annotation for the components, component authors can define the
resources for the component, such as a style sheet and script. This allows the page authors freedom
from defining resource locations.

Using Core Tags

The tags included in the Jakarta Faces core tag library are used to perform core actions that are not
performed by HTML tags.

Event-Handling Core Tags lists the event-handling core tags.

Event-Handling Core Tags

Tag Function
fractionlistener Adds an action listener to a parent component
f:phaselistener Adds a Phaselistener to a page

fisetPropertyActionlistener Registers a special action listener whose sole purpose is to push a
value into a managed bean when a form is submitted

fivalueChangelistener Adds a value-change listener to a parent component

Data-Conversion Core Tags lists the data-conversion core tags.

Data-Conversion Core Tags

Tag Function

f:converter Adds an arbitrary converter to the parent component
ficonvertDateTime Adds a DateTimeConverter instance to the parent component
f:convertNumber Adds a NumberConverter instance to the parent component

Facet Core Tags lists the facet core tags.

Facet Core Tags

Tag Function

f:facet Adds a nested component that has a special relationship to its
enclosing tag

f:metadata Registers a facet on a parent component

Core Tags That Represent Items in a List lists the core tags that represent items in a list.

Core Tags That Represent Items in a List

Tag Function
fiselectItem Represents one item in a list of items
fiselectItems Represents a set of items

Validator Core Tags lists the validator core tags.

149

Validator Core Tags
Tag
f:validateDoubleRange
f:validatelength
f:validatelLongRange
f:validator
f:validateRegEx
f:validateBean

f:validateRequired

Function

Adds a DoubleRangeValidator to a component

Adds a LengthValidator to a component

Adds a LongRangeValidator to a component

Adds a custom validator to a component

Adds a RegExValidator to a component

Delegates the validation of a local value to a BeanValidator

Enforces the presence of a value in a component

Miscellaneous Core Tags lists the core tags that fall into other categories.

Miscellaneous Core Tags
Tag Category
Attribute configuration
Localization

Parameter substitution

Ajax

Event

WebSocket

Tag

Function

fiattribute Adds configurable attributes to a parent component

f:loadBundle Specifies a ResourceBundle that is exposed as a Map

fiparam Substitutes parameters into a MessageFormat instance and
adds query string name-value pairs to a URL

fiajax Associates an Ajax action with a single component or a
group of components based on placement

f:event Allows installing a ComponentSystemEventListener on a
component

fiwebsocket Allows server-side communications to be pushed to all

instances of a socket containing the same channel name.

These tags, which are used in conjunction with component tags, are explained in other sections of

this tutorial.

Where the Core Tags Are Explained lists the sections that explain how to use specific core tags.

Where the Core Tags Are Explained

Tags
Event-handling tags

Data-conversion tags

f:facet

f:1loadBundle
f:metadata

f:param

150

Where Explained
Registering Listeners on Components
Using the Standard Converters

Using Data-Bound Table Components and Laying Out Components
with the h:panelGrid and h:panelGroup Tags

Setting the Resource Bundle
Using View Parameters to Configure Bookmarkable URLs

Displaying a Formatted Message with the h:outputFormat Tag

Tags Where Explained

f:selectItemand Using the f:selectIltem and f:selectltems Tags
f:selectItems

Validator tags Using the Standard Validators

fiajax [web:faces-ajax::faces-

ajax:::_using_ajax_with_jakarta_faces_technology]

f:websocket [web:faces-ws::faces-

ws:::_using websockets_with_jakarta_faces_technology]

Using Converters, Listeners, and Validators

The previous chapter described components and explained how to add them to a web page. This
chapter provides information on adding more functionality to the components through converters,
listeners, and validators.

* Converters are used to convert data that is received from the input components. Converters
allow an application to bring the strongly typed features of the Java programming language into
the String-based world of HTTP servlet programming.

* Listeners are used to listen to the events happening in the page and perform actions as defined.

 Validators are used to validate the data that is received from the input components. Validators
allow an application to express constraints on form input data to ensure that the necessary
requirements are met before the input data is processed.

Using the Standard Converters

The Jakarta Faces implementation provides a set of Converter implementations that you can use to
convert component data. The purpose of conversion is to take the String-based data coming in from
the Servlet API and convert it to strongly typed Java objects suitable for the business domain. For
more information on the conceptual details of the conversion model, see Conversion Model.

The standard Converter implementations are located in the jakarta.faces.convert package.
Normally, converters are implicitly assigned based on the type of the EL expression pointed to by
the value of the component. However, these converters can also be accessed by a converter ID.
Converter Classes and Converter IDs shows the converter classes and their associated converter
IDs.

Converter Classes and Converter IDs

Class in the Converter ID
jakarta.faces.convert

Package

BigDecimalConverter jakarta.faces.BigDecimal
BigIntegerConverter jakarta.faces.BigInteger
BooleanConverter jakarta.faces.Boolean
ByteConverter jakarta.faces.Byte

151

Class in the Converter ID
jakarta.faces.convert

Package

CharacterConverter jakarta.faces.Character
DateTimeConverter jakarta.faces.DateTime
DoubleConverter jakarta.faces.Double
EnumConverter jakarta.faces.Enum
FloatConverter jakarta.faces.Float
IntegerConverter jakarta.faces.Integer
LongConverter jakarta.faces.Long
NumberConverter jakarta.faces.Number
ShortConverter jakarta.faces.Short

A standard error message is associated with each of these converters. If you have registered one of
these converters onto a component on your page and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the
following error message appears if BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input component
on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own tags, which
allow you to configure the format of the component data using the tag attributes. For more
information about using DateTimeConverter, see Using DateTimeConverter. For more information
about using NumberConverter, see Using NumberConverter. The following section explains how to
convert a component’s value, including how to register other standard converters with a
component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following ways.

* Nest one of the standard converter tags inside the component’s tag. These tags are
f:convertDateTime and f:convertNumber, which are described in Using NumberConverter,
respectively.

* Bind the value of the component to a managed bean property of the same type as the converter.
This is the most common technique.

» Refer to the converter from the component tag’s converter attribute, specifying the ID of the
converter class.

* Nest an f:converter tag inside of the component tag, and use either the f:converter tag’s
converterld attribute or its binding attribute to refer to the converter.

152

As an example of the second technique, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a managed bean property. Here is an
example:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

The data from the h:inputText tag in the this example will be converted to a java.lang.Integer
value. The Integer type is a supported type of NumberConverter. If you don’t need to specify any
formatting instructions using the f:convertNumber tag attributes, and if one of the standard
converters will suffice, you can simply reference that converter by using the component tag’s
converter attribute.

You can also nest an f:converter tag within the component tag and use either the converter tag’s
converterld attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example that uses one of the
converter IDs listed in Converter Classes and Converter IDs:

<h:inputText value="#{loginBean.age}">
<f:converter converterId="jakarta.faces.Integer" />
</h:inputText>

Instead of using the converterId attribute, the f:converter tag can use the binding attribute. The
binding attribute must resolve to a bean property that accepts and returns an appropriate Converter
instance.

You can also create custom converters and register them on components using the f:converter tag.
For details, see Creating and Using a Custom Converter.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag inside
the component tag. The convertDateTime tag has several attributes that allow you to specify the
format and type of the data. Attributes for the f:convertDateTime Tag lists the attributes.

Here is a simple example of a convertDateTime tag:
<h:outputText value="#{cashierBean.shipDate}">

<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the managed bean property to
which the component is bound is of type java.util.Date. In the preceding example,
cashierBean.shipDate must be of type java.util.Date.

153

The example tag can display the following output:

Saturday, September 21, 2013

You can also display the same date and time by using the following tag in which the date format is

specified:

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime dateStyle="full"
locale="es"
timeStyle="1long" type="both" />
</h:outputText>

This tag would display the following output:

jueves 24 de octubre de 2013 15:07:04 GMT

Refer to the "Customizing Formats" lesson of the Java Tutorial at https://docs.oracle.com/javase/
tutorial/il8n/format/simpleDateFormat.html for more information on how to format the output

using the pattern attribute of the convertDateTime tag.

Attributes for the f:convertDateTime Tag

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a managed bean
property.

dateStyle String Defines the format, as specified by

java.text.DateFormat, of a date or the date part
of a date string. Applied only if type is date or
both and if pattern is not defined. Valid values:
default, short, medium, long, and full. If no value

is specified, default is used.

for String Used with composite components. Refers to one
of the objects within the composite component

inside which this tag is nested.

154

https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Attribute

locale

pattern

timeStyle

timeZone

type

Type

String or Locale

String

String

String or TimeZone

String

Type Attribute and Default Pattern Values

Type Attribute

both

date
time
localDate
localTime

localDateTime

offsetTime

offsetDateTime

Class

java.

java.
java.
java.
java.

java.

e

java.

java.

me

util.

util.
util.
time.
time.

time.

time.

time.

Date

Date
Date
LocalDate
LocalTime

LocalDateTim

OffsetTime
OffsetDateT1

Description

Locale whose predefined styles for dates and
times are used during formatting or parsing. If
not specified, the Locale returned by
FacesContext.getlLocale will be used.

Custom formatting pattern that determines how
the date/time string should be formatted and
parsed. If this attribute is specified, dateStyle
and timeStyle attributes are ignored.

See Type Attribute and Default Pattern Values
for the default values when pattern is not
specified.

Defines the format, as specified by
java.text.DateFormat, of a time or the time part
of a date string. Applied only if type is time and
pattern is not defined. Valid values: default,
short, medium, long, and full. If no value is
specified, default is used.

Time zone in which to interpret any time
information in the date string.

Specifies whether the string value will contain a
date, a time, or both. Valid values are: date, time,
both, LocalDate, LocalTime, LocalDateTime,
OffsetTime, OffsetDateTime, or ZonedDateTime. If
no value is specified, date is used.

See Type Attribute and Default Pattern Values
for additional information

Default When Pattern Is Not Specified

DateFormat.getDateTimeInstance(dateStyle, timeS
tyle)

DateFormat.getDateTimeInstance(dateStyle)
DateFormat.getDateTimeInstance(timeStyle)
DateTimeFormatter.oflLocalizedDate(dateStyle)
DateTimeFormatter.ofLocalizedTime(dateStyle)

DateTimeFormatter.oflLocalizedDateTime(dateStyl
e)

DateTimeFormatter.ISO_OFFSET_TIME
DateTimeFormatter.ISO_OFFSET _DATE_TIME

155

Type Attribute Class Default When Pattern Is Not Specified

zonedDateTime java.time.ZonedDateTim DateTimeFormatter.ISO_ZONED_DATE_TIME
e

Using NumberConverter

You can convert a component’s data to a java.lang.Number by nesting the convertNumber tag inside
the component tag. The convertNumber tag has several attributes that allow you to specify the format
and type of the data. Attributes for the f:convertNumber Tag lists the attributes.

The following example uses a convertNumber tag to display the total prices of the contents of a
shopping cart:

<h:outputText value="#{cart.total}">
<f:convertNumber currencySymbol="$" type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the managed bean property to
which the component is bound is of a primitive type or has a type of java.lang.Number. In the
preceding example, cart.total is of type double.

Here is an example of a number that this tag can display:

$934

This result can also be displayed by using the following tag in which the currency pattern is
specified:

<h:outputText id="cartTotal" value="#{cart.total}">
<f:convertNumber pattern="$####" />
</h:outputText>

See the "Customizing Formats" lesson of the Java Tutorial at https://docs.oracle.com/javase/tutorial/
i18n/format/decimalFormat.html for more information on how to format the output by using the
pattern attribute of the convertNumber tag.

Attributes for the f:convertNumber Tag

Attribute Type Description

binding NumberConverter Used to bind a converter to a managed bean
property.

currencyCode String ISO 4217 currency code, used only when
formatting currencies.

currencySymbol String Currency symbol, applied only when formatting
currencies.

156

https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html
https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Attribute Type Description

for String Used with composite components. Refers to one
of the objects within the composite component
inside which this tag is nested.

groupingUsed Boolean Specifies whether formatted output contains
grouping separators.

integerOnly Boolean Specifies whether only the integer part of the
value will be parsed.

locale String or Locale Locale whose number styles are used to format
or parse data.

maxFractionDigits int Maximum number of digits formatted in the
fractional part of the output.

maxIntegerDigits int Maximum number of digits formatted in the
integer part of the output.

minfFractionDigits int Minimum number of digits formatted in the
fractional part of the output.

minIntegerDigits int Minimum number of digits formatted in the
integer part of the output.

pattern String Custom formatting pattern that determines how
the number string is formatted and parsed.

type String Specifies whether the string value is parsed and
formatted as a number, currency, or percentage. If
not specified, number is used.

Registering Listeners on Components

An application developer can implement listeners as classes or as managed bean methods. If a
listener is a managed bean method, the page author references the method from either the
component’s valueChangelListener attribute or its actionlListener attribute. If the listener is a class,
the page author can reference the listener from either an f:valueChangelListener tag or an
f:actionlListener tag and nest the tag inside the component tag to register the listener on the
component.

Referencing a Method That Handles an Action Event and Referencing a Method That Handles a
Value-Change Event explain how a page author uses the valueChangelistener and actionListener
attributes to reference managed bean methods that handle events.

This section explains how to register a NameChanged value-change listener and a BookChange action
listener implementation on components. The Duke’s Bookstore case study includes both of these
listeners.

Registering a Value-Change Listener on a Component

A page author can register a ValueChangelListener implementation on a component that implements

157

EditableValueHolder by nesting an f:valueChangelListener tag within the component’s tag on the
page. The f:valueChangelistener tag supports the attributes shown in Attributes for the
f:valueChangeListener Tag, one of which must be used.

Attributes for the f:valueChangeListener Tag

Attribut Description
e

type References the fully qualified class name of a
ValueChangeListener implementation. Can accept
a literal or a value expression.

binding References an object that implements
ValueChangelListener. Can accept only a value
expression, which must point to a managed
bean property that accepts and returns a
ValueChangelListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name"

size="30"

value="#{cashierBean.name}"

required="true"

requiredMessage="#{bundle.ReqCustomerName}">

<f:valueChangelListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />

</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
ValueChangeListener implementation registered on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent associated with the specified
ValueChangeListener to the component.

The binding attribute is used to bind a ValueChangelistener implementation to a managed bean
property. This attribute works in a similar way to the binding attribute supported by the standard
converter tags. See Binding Component Values and Instances to Managed Bean Properties for more
information.

Registering an Action Listener on a Component

A page author can register an ActionlListener implementation on a command component by nesting
an f:actionlListener tag within the component’s tag on the page. Similarly to the
f:valueChangelistener tag, the f:actionListener tag supports both the type and binding attributes.
One of these attributes must be used to reference the action listener.

Here is an example of an h:commandLink tag that references an ActionListener implementation:

158

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

The type attribute of the f:actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the f:valueChangeListener tag, the f:actionListener tag
also supports the binding attribute. See Binding Converters, Listeners, and Validators to Managed
Bean Properties for more information about binding listeners to managed bean properties.

In addition to the actionListener tag that allows you register a custom listener onto a component,
the core tag library includes the f:setPropertyActionlListener tag. You use this tag to register a
special action listener onto the ActionSource instance associated with a component. When the
component is activated, the listener will store the object referenced by the tag’s value attribute into
the object referenced by the tag’s target attribute.

The bookcatalog.xhtml page of the Duke’s Bookstore application uses f:setPropertyActionListener
with two components: the h:commandLink component used to link to the bookdetails.xhtml page and
the h:commandButton component used to add a book to the cart:

<h:dataTable id="books"
value="#{store.books}"
var="book"
headerClass="1ist-header"
styleClass="1ist-background"
rowClasses="1list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionlListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandLink>
</h:column>

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.CartAdd}"/>
</f:facet>
<h:commandButton id="add"
action="#{catalog.add}"
value="#{bundle.CartAdd}">
<f:setPropertyActionlListener target="#{requestScope.book}"

159

value="#{book}"/>
</h:commandButton>
</h:column>

</h:dataTable>

The h:commandLink and h:commandButton tags are within an h:dataTable tag, which iterates over the
list of books. The var attribute refers to a single book in the list of books.

The object referenced by the var attribute of an h:dataTable tag is in page scope. However, in this
case you need to put this object into request scope so that when the user activates the commandLink
component to go to bookdetails.xhtml or activates the commandButton component to go to
bookcatalog.xhtml, the book data is available to those pages. Therefore, the
f:setPropertyActionListener tag is used to set the current book object into request scope when the
commandLink or commandButton component is activated.

In the preceding example, the f:setPropertyActionListener tag’s value attribute references the book
object. The f:setPropertyActionListener tag’s target attribute references the value expression
requestScope.book, which is where the book object referenced by the value attribute is stored when
the commandLink or the commandButton component is activated.

Using the Standard Validators

Jakarta Faces technology provides a set of standard classes and associated tags that page authors
and application developers can use to validate a component’s data. The Validator Classes lists all the

standard validator classes and the tags that allow you to use the validators from the page.

The Validator Classes

Validator Tag Function

Class

BeanValidator validateBean Registers a bean validator for the component.

BeanValidator validateWlholeB Allows cross-field validation by enabling class-level bean

edn validation on CDI-based backing beans.

DoubleRangeVal validateDouble Checks whether the local value of a component is within a

idator Range certain range. The value must be floating-point or convertible to
floating-point.

LengthValidato validatelength Checks whether the length of a component’s local value is within

: a certain range. The value must be a java.lang.String.

LongRangeValid validateLongRa Checks whether the local value of a component is within a

ator nge certain range. The value must be any numeric type or String
that can be converted to a long.

RegexValidator validateRegex Checks whether the local value of a component is a match
against a regular expression from the java.util.regex package.

RequiredValida validateRequir Ensures that the local value is not empty on an

tor ed

160

EditableValueHolder component.

All of these validator classes implement the Validator interface. Component writers and application
developers can also implement this interface to define their own set of constraints for a
component’s value.

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{0}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the {0}
substitution parameter is replaced with the maximum value allowed by the validator.

See Displaying Error Messages with the h:message and h:messages Tags for information on how to
display validation error messages on the page when validation fails.

Instead of using the standard validators, you can use Bean Validation to validate data. If you specify
bean validation constraints on your managed bean properties, the constraints are automatically
placed on the corresponding fields on your applications web pages. See [beanvalidation:bean-
validation::bean-validation:::_introduction_to_jakarta_bean_validation] for more information. You
do not need to specify the validateBean tag to use Bean Validation, but the tag allows you to use
more advanced Bean Validation features. For example, you can use the validationGroups attribute
of the tag to specify constraint groups.

You can also create and register custom validators, although Bean Validation has made this feature
less useful. For details, see Creating and Using a Custom Validator.

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that validator on
the component. You can do this in one of the following ways.

* Nest the validator’s corresponding tag (show